The Stacks project

57.3 Serre functors

The material in this section is taken from [Bondal-Kapranov].

Lemma 57.3.1. Let $k$ be a field. Let $\mathcal{T}$ be a $k$-linear triangulated category such that $\dim _ k \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) < \infty $ for all $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$. The following are equivalent

  1. there exists a $k$-linear equivalence $S : \mathcal{T} \to \mathcal{T}$ and $k$-linear isomorphisms $c_{X, Y} : \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))^\vee $ functorial in $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$,

  2. for every $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$ the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee $ is representable and the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, X)^\vee $ is corepresentable.

Proof. Condition (1) implies (2) since given $(S, c)$ and $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$ the object $S(X)$ represents the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee $ and the object $S^{-1}(X)$ corepresents the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, X)^\vee $.

Assume (2). We will repeatedly use the Yoneda lemma, see Categories, Lemma 4.3.5. For every $X$ denote $S(X)$ the object representing the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee $. Given $\varphi : X \to X'$, we obtain a unique arrow $S(\varphi ) : S(X) \to S(X')$ determined by the corresponding transformation of functors $\mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, -)^\vee \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X', -)^\vee $. Thus $S$ is a functor and we obtain the isomorphisms $c_{X, Y}$ by construction. It remains to show that $S$ is an equivalence. For every $X$ denote $S'(X)$ the object corepresenting the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, X)^\vee $. Arguing as above we find that $S'$ is a functor. We claim that $S'$ is quasi-inverse to $S$. To see this observe that

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))^\vee = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(S'(S(X)), Y) \]

bifunctorially, i.e., we find $S' \circ S \cong \text{id}_\mathcal {T}$. Similarly, we have

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, X) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(S'(X), Y)^\vee = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(S'(X))) \]

and we find $S \circ S' \cong \text{id}_\mathcal {T}$. $\square$

Definition 57.3.2. Let $k$ be a field. Let $\mathcal{T}$ be a $k$-linear triangulated category such that $\dim _ k \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) < \infty $ for all $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$. We say a Serre functor exists if the equivalent conditions of Lemma 57.3.1 are satisfied. In this case a Serre functor is a $k$-linear equivalence $S : \mathcal{T} \to \mathcal{T}$ endowed with $k$-linear isomorphisms $c_{X, Y} : \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))^\vee $ functorial in $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$.

Remark 57.3.3. Let $X^0 \to X^1 \to X^2 \to X^0[1]$ and $Y^0 \to Y^1 \to Y^2 \to Y^0[1]$ be distinguished triangles in a triangulated category. For $p \in \mathbf{Z}$ write $p = 3n + i$ with $i \in \{ 0, 1, 2\} $ and set we set $X^ p = X^ i[n]$. Simlarly for $Y^ q$. Consider the double complex with terms

\[ K^{p, q} = \mathop{\mathrm{Hom}}\nolimits (X^{-p}, Y^ q) \]

The differential $d_1 : K^{p, q} \to K^{p + 1, q}$ is given by the map $X^{-p - 1} \to X^{-p}$ (equal to the corresponding map in the first distinguished triangle up the a shift) and the differential $d_2 : K^{p, q} \to K^{p, q + 1}$ likewise by the map $Y^ q \to Y^{q + 1}$. From Derived Categories, Lemma 13.4.2 we see that the rows and columns of this double complex are exact. Furthermore, we see that $K^{p, q} = K^{p + 3, q - 3}$ and these equalities are compatible with the differentials. Finally, axiom TR3 implies one additional property: given $\alpha \in K^{p, q}$ and $\beta \in K^{p - 1, q + 1}$ such that $d_2 \alpha = d_1 \beta $, there exists a $\gamma \in K^{p - 2, q + 2}$ such that $d_1 \gamma = d_2 \beta $ in $K^{p - 1, q + 2}$ and $d_2 \gamma = d_1 \alpha $ in $K^{p - 2, q + 3} = K^{p + 1, q}$. (Hint: for $p = q = 0$ this is exactly the statement of TR3 and for other indices prove it by shifting.) A double complex with these properties is called a matress (see [Bondal-Kapranov]).

Remark 57.3.4. Let $k$ be a field and let $K^{\bullet , \bullet }$ be a double complex of finite dimensional $k$-vector spaces which is also a matress as in Remark 57.3.3. We claim that the dual double complex $L^{p, q} = \mathop{\mathrm{Hom}}\nolimits _ k(K^{-q, -p}, k)$ is also a matress. The exactness of rows and columns and the 3-periodicity are immediate. To see the additional condition holds, consider the linear map

\[ \partial : K^{p, q} \oplus K^{p - 1, q + 1} \oplus K^{p - 2, q + 2} \longrightarrow K^{p, q + 1} \oplus K^{p - 1, q + 2} \oplus K^{p - 2, q + 3} \]

sending $(\alpha , \beta , \gamma )$ to $(d_2 \alpha - d_1 \beta , d_2 \gamma - d_1 \alpha , d_1 \gamma - d_2 \beta )$ with identifications as in Remark 57.3.3. The condition of being a matress is that

\[ \mathop{\mathrm{Im}}(\partial ) \cap \left( 0 \oplus K^{p - 1, q + 2} \oplus K^{p - 2, q + 3} \right) = \mathop{\mathrm{Im}}(\partial |_{0 \oplus 0 \oplus K^{p - 2, q + 2}}) \]

Denoting ${}^\wedge $ the dual of a vector space or map, taking duals we get

\[ \mathop{\mathrm{Ker}}(\partial ^\wedge ) + \left(L^{-p, -q - 1} \oplus 0 \oplus 0 \right) = \mathop{\mathrm{Ker}}(\text{pr}_{L^{-p + 2, -q - 2}} \circ \partial ^\wedge ) \]

where the $\text{pr}$ term indicates projection. This implies that $\mathop{\mathrm{Im}}(\partial ^\wedge ) \cap (L^{-p, -q} \oplus L^{-p + 1, -q - 1} \oplus 0)$ is equal to $\mathop{\mathrm{Im}}(\partial ^\wedge |_{L^{-p, -q - 1} \oplus 0 \oplus 0})$ and this translates into the matress condition for $L^{\bullet , \bullet }$. Some details omitted.

Lemma 57.3.5. In the situation of Definition 57.3.2. If a Serre functor exists, then it is unique up to unique isomorphism and it is an exact functor of triangulated categories.

Proof. Given a Serre functor $S$ the object $S(X)$ represents the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee $. Thus the object $S(X)$ together with the functorial identification $\mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))$ is determined up to unique isomorphism by the Yoneda lemma (Categories, Lemma 4.3.5). Moreover, for $\varphi : X \to X'$, the arrow $S(\varphi ) : S(X) \to S(X')$ is uniquely determined by the corresponding transformation of functors $\mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, -)^\vee \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X', -)^\vee $.

For objects $X, Y$ of $\mathcal{T}$ we have

\begin{align*} \mathop{\mathrm{Hom}}\nolimits (Y, S(X)[1])^\vee & = \mathop{\mathrm{Hom}}\nolimits (Y[-1], S(X))^\vee \\ & = \mathop{\mathrm{Hom}}\nolimits (X, Y[-1]) \\ & = \mathop{\mathrm{Hom}}\nolimits (X[1], Y) \\ & = \mathop{\mathrm{Hom}}\nolimits (Y, S(X[1]))^\vee \end{align*}

By the Yoneda lemma we conclude that there is a unique isomorphism $S(X[1]) \to S(X)[1]$ inducing the isomorphism from top left to bottom right. Since each of the isomorphisms above is functorial in both $X$ and $Y$ we find that this defines an isomorphism of functors $S \circ [1] \to [1] \circ S$.

Let $(A, B, C, f, g, h)$ be a distinguished triangle in $\mathcal{T}$. We have to show that the triangle $(S(A), S(B), S(C), S(f), S(g), S(h))$ is distinguished. Here we use the canonical isomorphism $S(A[1]) \to S(A)[1]$ constructed above to identify the target $S(A[1])$ of $S(h)$ with $S(A)[1]$. We first observe that for any $X$ in $\mathcal{T}$ the triangle $(S(A), S(B), S(C), S(f), S(g), S(h))$ induces a long exact sequence

\[ \ldots \to \mathop{\mathrm{Hom}}\nolimits (X, S(A)) \to \mathop{\mathrm{Hom}}\nolimits (X, S(B)) \to \mathop{\mathrm{Hom}}\nolimits (X, S(C)) \to \mathop{\mathrm{Hom}}\nolimits (X, S(A)[1]) \to \ldots \]

of finite dimensional $k$-vector spaces. Namely, this sequence is $k$-linear dual of the sequence

\[ \ldots \leftarrow \mathop{\mathrm{Hom}}\nolimits (A, X) \leftarrow \mathop{\mathrm{Hom}}\nolimits (B, X) \leftarrow \mathop{\mathrm{Hom}}\nolimits (C, X) \leftarrow \mathop{\mathrm{Hom}}\nolimits (A[1], X) \leftarrow \ldots \]

which is exact by Derived Categories, Lemma 13.4.2. Next, we choose a distinguished triangle $(S(A), E, S(C), i, p, S(h))$ which is possible by axioms TR1 and TR2. We want to construct the dotted arrow making following diagram commute

\[ \xymatrix{ S(C)[-1] \ar[r]_-{S(h[-1])} & S(A) \ar[r]_{S(f)} & S(B) \ar[r]_{S(g)} & S(C) \ar[r]_{S(h)} & S(A)[1] \\ S(C)[-1] \ar[r]^-{S(h[-1])} \ar@{=}[u] & S(A) \ar[r]^ i \ar@{=}[u] & E \ar[r]^ p \ar@{..>}[u]^\varphi & S(C) \ar[r]^{S(h)} \ar@{=}[u] & S(A)[1] \ar@{=}[u] } \]

Namely, if we have $\varphi $, then we claim for any $X$ the resulting map $\mathop{\mathrm{Hom}}\nolimits (X, E) \to \mathop{\mathrm{Hom}}\nolimits (X, S(B))$ will be an isomorphism of $k$-vector spaces. Namely, we will obtain a commutative diagram

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits (X, S(C)[-1]) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (X, S(A)) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (X, S(B)) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (X, S(C)) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (X, S(A)[1]) \\ \mathop{\mathrm{Hom}}\nolimits (X, S(C)[-1]) \ar[r] \ar@{=}[u] & \mathop{\mathrm{Hom}}\nolimits (X, S(A)) \ar[r] \ar@{=}[u] & \mathop{\mathrm{Hom}}\nolimits (X, E) \ar[r] \ar[u]^\varphi & \mathop{\mathrm{Hom}}\nolimits (X, S(C)) \ar[r] \ar@{=}[u] & \mathop{\mathrm{Hom}}\nolimits (X, S(A)[1]) \ar@{=}[u] } \]

with exact rows (see above) and we can apply the 5 lemma (Homology, Lemma 12.5.20) to see that the middle arrow is an isomorphism. By the Yoneda lemma we conclude that $\varphi $ is an isomorphism.

To find $\varphi $, let us form the matress of Remark 57.3.3 from the distinguished triangles $A \to B \to C \to A[1]$ and $S(A) \to E \to S(C) \to S(A)[1]$. By Remark 57.3.4 the $k$-linear dual of this is also a matress. Using that $S$ is a Serre functor, we see as above that this dual matress is the double complex made from the triangles (the second of which we do not yet know to be distinguished) $S(A) \to E \to S(C) \to S(A)[1]$ and $S(A) \to S(B) \to S(C) \to S(A)[1]$. But the matress condition exactly tells us that the maps $S(A) \to S(A)$ and $S(C) \to S(C)$ fit into a morphism of triangles, i.e., that we have a $\varphi $ making the diagram above commute. $\square$


Comments (2)

Comment #9991 by Jonas on

In the last step of the proof of Lemma 57.3.3, how exactly is TR3 used to obtain an element of mapping to both and ?


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FY3. Beware of the difference between the letter 'O' and the digit '0'.