The Stacks project

Lemma 57.5.2. Let $k$ be a field. Let $n \geq 0$. Let $K \in D_\mathit{QCoh}(\mathcal{O}_{\mathbf{P}^ n_ k})$. The following are equivalent

  1. $K$ is in $D^ b_{\textit{Coh}}(\mathcal{O}_{\mathbf{P}^ n_ k})$,

  2. $\sum _{i \in \mathbf{Z}} \dim _ k H^ i(\mathbf{P}^ n_ k, E \otimes ^\mathbf {L} K) < \infty $ for each perfect object $E$ of $D(\mathcal{O}_{\mathbf{P}^ n_ k})$,

  3. $\sum _{i \in \mathbf{Z}} \dim _ k \mathop{\mathrm{Ext}}\nolimits ^ i_{\mathbf{P}^ n_ k}(E, K) < \infty $ for each perfect object $E$ of $D(\mathcal{O}_{\mathbf{P}^ n_ k})$,

  4. $\sum _{i \in \mathbf{Z}} \dim _ k H^ i(\mathbf{P}^ n_ k, K \otimes ^\mathbf {L} \mathcal{O}_{\mathbf{P}^ n_ k}(d)) < \infty $ for $d = 0, 1, \ldots , n$.

Proof. Parts (2) and (3) are equivalent by Cohomology, Lemma 20.50.5. If (1) is true, then for $E$ perfect the derived tensor product $E \otimes ^\mathbf {L} K$ is in $D^ b_{\textit{Coh}}(\mathcal{O}_{\mathbf{P}^ n_ k})$ and we see that (2) holds by Derived Categories of Schemes, Lemma 36.11.3. It is clear that (2) implies (4) as $\mathcal{O}_{\mathbf{P}^ n_ k}(d)$ can be viewed as a perfect object of the derived category of $\mathbf{P}^ n_ k$. Thus it suffices to prove that (4) implies (1).

Assume (4). Let $R$ be as in Lemma 57.5.1. Let $P = \bigoplus _{d = 0, \ldots , n} \mathcal{O}_{\mathbf{P}^ n_ k}(-d)$. Recall that $R = \text{End}_{\mathbf{P}^ n_ k}(P)$ whereas all other self-Exts of $P$ are zero and that $P$ determines an equivalence $- \otimes ^\mathbf {L} P : D(R) \to D_\mathit{QCoh}(\mathcal{O}_{\mathbf{P}^ n_ k})$ by Derived Categories of Schemes, Lemma 36.20.1. Say $K$ corresponds to $L$ in $D(R)$. Then

\begin{align*} H^ i(L) & = \mathop{\mathrm{Ext}}\nolimits ^ i_{D(R)}(R, L) \\ & = \mathop{\mathrm{Ext}}\nolimits ^ i_{\mathbf{P}^ n_ k}(P, K) \\ & = H^ i(\mathbf{P}^ n_ k, K \otimes P^\vee ) \\ & = \bigoplus \nolimits _{d = 0, \ldots , n} H^ i(\mathbf{P}^ n_ k, K \otimes \mathcal{O}(d)) \end{align*}

by Differential Graded Algebra, Lemma 22.35.4 (and the fact that $- \otimes ^\mathbf {L} P$ is an equivalence) and Cohomology, Lemma 20.50.5. Thus our assumption (4) implies that $L$ satisfies condition (2) of Lemma 57.5.1 and hence is a compact object of $D(R)$. Therefore $K$ is a compact object of $D_\mathit{QCoh}(\mathcal{O}_{\mathbf{P}^ n_ k})$. Thus $K$ is perfect by Derived Categories of Schemes, Proposition 36.17.1. Since $D_{perf}(\mathcal{O}_{\mathbf{P}^ n_ k}) = D^ b_{\textit{Coh}}(\mathcal{O}_{\mathbf{P}^ n_ k})$ by Derived Categories of Schemes, Lemma 36.11.8 we conclude (1) holds. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FYB. Beware of the difference between the letter 'O' and the digit '0'.