**Proof.**
The implication (1) $\Rightarrow $ (2) follows from Lemma 57.5.3. The implication (2) $\Rightarrow $ (1) follows from More on Morphisms, Lemma 37.69.6 (see Derived Categories of Schemes, Example 36.35.2 for the meaning of a relatively perfect object over a field); the easier proof in the projective case is in the next paragraph.

Assume (2) and $X$ projective over $k$. Choose a closed immersion $i : X \to \mathbf{P}^ n_ k$. It suffices to show that $Ri_*K$ is in $D^ b_{\textit{Coh}}(\mathbf{P}^ n_ k)$ since a quasi-coherent module $\mathcal{F}$ on $X$ is coherent, resp. zero if and only if $i_*\mathcal{F}$ is coherent, resp. zero. For a perfect object $E$ of $D(\mathcal{O}_{\mathbf{P}^ n_ k})$, $Li^*E$ is a perfect object of $D(\mathcal{O}_ X)$ and

\[ \mathop{\mathrm{Ext}}\nolimits ^ q_{\mathbf{P}^ n_ k}(E, Ri_*K) = \mathop{\mathrm{Ext}}\nolimits ^ q_ X(Li^*E, K) \]

Hence by our assumption we see that $\sum _{q \in \mathbf{Z}} \dim _ k \mathop{\mathrm{Ext}}\nolimits ^ q_{\mathbf{P}^ n_ k}(E, Ri_*K) < \infty $. We conclude by Lemma 57.5.2.
$\square$

## Comments (0)