Lemma 57.17.3. Let $X$ be a scheme of finite type over a countable Noetherian ring. Then the categories $D_{perf}(\mathcal{O}_ X)$ and $D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ are countable.

Proof. Observe that $X$ is Noetherian by Morphisms, Lemma 29.15.6. Hence $D_{perf}(\mathcal{O}_ X)$ is a full subcategory of $D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ by Derived Categories of Schemes, Lemma 36.11.6. Thus it suffices to prove the result for $D^ b_{\textit{Coh}}(\mathcal{O}_ X)$. Recall that $D^ b_{\textit{Coh}}(\mathcal{O}_ X) = D^ b(\textit{Coh}(\mathcal{O}_ X))$ by Derived Categories of Schemes, Proposition 36.11.2. Hence by Lemma 57.17.2 it suffices to prove that $\textit{Coh}(\mathcal{O}_ X)$ is countable. This we omit. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G0W. Beware of the difference between the letter 'O' and the digit '0'.