The Stacks project

Lemma 36.6.5. With $X$, $f_1, \ldots , f_ c \in \Gamma (X, \mathcal{O}_ X)$, and $\mathcal{F}$ as in Remark 36.6.4 the complex (36.6.4.1) restricts to an acyclic complex over $X \setminus Z$.

Proof. Let $W \subset X \setminus Z$ be an open subset. Evaluating the complex of sheaves (36.6.4.1) on $W$ we obtain the complex

\[ \mathcal{F}(W) \to \bigoplus \nolimits _{i_0} \mathcal{F}(U_{i_0} \cap W) \to \bigoplus \nolimits _{i_0 < i_1} \mathcal{F}(U_{i_0i_1} \cap W) \to \ldots \]

In other words, we obtain the extended ordered Čech complex for the covering $W = \bigcup U_ i \cap W$ and the standard ordering on $\{ 1, \ldots , c\} $, see Cohomology, Section 20.23. By Cohomology, Lemma 20.23.7 this complex is homotopic to zero as soon as $W$ is contained in $V(f_ i)$ for some $1 \leq i \leq c$. This finishes the proof. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 36.6: Cohomology with support in a closed subset

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G7K. Beware of the difference between the letter 'O' and the digit '0'.