Processing math: 100%

The Stacks project

Lemma 36.6.12. With X, f_1, \ldots , f_ c \in \Gamma (X, \mathcal{O}_ X), and \mathcal{F} as in Remark 36.6.4. Let a_{ji} \in \Gamma (X, \mathcal{O}_ X) for 1 \leq i, j \leq c and set g_ j = \sum _{i = 1, \ldots , c} a_{ji}f_ i. Assume g_1, \ldots , g_ c scheme theoretically cut out Z. If \mathcal{F} is quasi-coherent, then

c_{f_1, \ldots , f_ c} = \det (a_{ji}) c_{g_1, \ldots , g_ c}

where c_{f_1, \ldots , f_ c} and c_{g_1, \ldots , g_ c} are as in Remark 36.6.10.

Proof. We will prove that c_{f_1, \ldots , f_ c}(s) = \det (a_{ij}) c_{g_1, \ldots , g_ c}(s) as global sections of \mathcal{H}_ Z(\mathcal{F}) for any s \in \mathcal{F}(X). This is sufficient since we then obtain the same result for section over any open subscheme of X. To do this, for 1 \leq i_0 < \ldots < i_ p \leq c and 1 \leq j_0 < \ldots < j_ q \leq c we denote U_{i_0 \ldots i_ p} \subset X, V_{j_0 \ldots j_ q} \subset X, and W_{i_0 \ldots i_ p, j_0 \ldots j_ q} \subset X the open subscheme where f_{i_0} \ldots f_{i_ p} is invertible, g_{j_0} \ldots g_{j_ q} is invertible, and where f_{i_0} \ldots f_{i_ p}g_{j_0} \ldots g_{j_ q} is invertible. We denote \mathcal{F}_{i_0 \ldots i_ p}, resp. \mathcal{F}'_{j_0 \ldots j_ q} \mathcal{F}''_{i_0 \ldots i_ p, j_0 \ldots j_ q} the pushforward to X of the restriction of \mathcal{F} to U_{i_0 \ldots i_ p}, resp. V_{j_0 \ldots j_ q}, resp. W_{i_0 \ldots i_ p, j_0 \ldots j_ q}. Then we obtain three extended alternating Čech complexes

\mathcal{F}^\bullet : \mathcal{F} \to \bigoplus \nolimits _{i_0} \mathcal{F}_{i_0} \to \bigoplus \nolimits _{i_0 < i_1} \mathcal{F}_{i_0i_1} \to \ldots

and

(\mathcal{F}')^\bullet : \mathcal{F} \to \bigoplus \nolimits _{j_0} \mathcal{F}'_{j_0} \to \bigoplus \nolimits _{j_0 < j_1} \mathcal{F}'_{j_0j_1} \to \ldots

and

(\mathcal{F}'')^\bullet : \mathcal{F} \to \bigoplus \nolimits _{i_0} \mathcal{F}_{i_0} \oplus \bigoplus \nolimits _{j_0} \mathcal{F}'_{j_0} \to \bigoplus \nolimits _{i_0 < i_1} \mathcal{F}_{i_0i_1} \oplus \bigoplus \nolimits _{i_0, j_0} \mathcal{F}''_{i_0, j_0} \oplus \bigoplus \nolimits _{j_0 < j_1} \mathcal{F}'_{j_0j_1} \to \ldots

whose differentials are those used in defining (36.6.4.1). There are maps of complexes

(\mathcal{F}'')^\bullet \to \mathcal{F}^\bullet \quad \text{and}\quad (\mathcal{F}'')^\bullet \to (\mathcal{F}')^\bullet

given by the projection maps on the terms (and hence inducing the identity map in degree 0). Observe that by Lemma 36.6.7 each of these complexes represents i_*R\mathcal{H}_ Z(\mathcal{F}) and these maps represent the identity on this object. Thus it suffices to find an element

\sigma \in H^ c((\mathcal{F}'')^\bullet (X))

mapping to c_{f_1, \ldots , f_ c}(s) and \det (a_{ji})c_{g_1, \ldots , g_ c}(s) by these two maps. It turns out we can explicitly give a cocycle for \sigma . Namely, we take

\sigma _{1 \ldots c} = \frac{s}{f_1 \ldots f_ c} \in \mathcal{F}_{1 \ldots c}(X) \quad \text{and}\quad \sigma '_{1 \ldots c} = \frac{\det (a_{ji})s}{g_1 \ldots g_ c} \in \mathcal{F}'_{1 \ldots c}(X)

and we take

\sigma _{i_0 \ldots i_ p, j_0 \ldots j_{c - p - 2}} = \frac{\lambda (i_0 \ldots i_ p, j_0 \ldots j_{c - p - 2})s}{f_{i_0} \ldots f_{i_ p}g_{j_0} \ldots g_{j_{c - p - 2}}} \in \mathcal{F}''_{i_0 \ldots i_ p, j_0 \ldots j_{c - p - 2}}(X)

where \lambda (i_0 \ldots i_ p, j_0 \ldots j_{c - p - 2}) is the coefficient of e_1 \wedge \ldots \wedge e_ c in the formal expression

e_{i_0} \wedge \ldots \wedge e_{i_ p} \wedge (a_{j_01} e_1 + \ldots + a_{j_0c}e_ c) \wedge \ldots \wedge (a_{j_{c - p - 2}1} e_1 + \ldots + a_{j_{c - p - 2}c}e_ c)

To verify that \sigma is a cocycle, we have to show for 1 \leq i_0 < \ldots < i_ p \leq c and 1 \leq j_0 < \ldots < j_{c - p - 1} \leq c that we have

\begin{align*} 0 & = \sum \nolimits _{a = 0, \ldots , p} (-1)^ a f_{i_ a} \lambda (i_0 \ldots \hat i_ a \ldots i_ p, j_0 \ldots j_{c - p - 1}) \\ & + \sum \nolimits _{b = 0, \ldots , c - p - 1} (-1)^{p + b + 1}g_{j_ b} \lambda (i_0 \ldots i_ p, j_0 \ldots \hat j_ b \ldots j_{c - p - 1}) \end{align*}

The easiest way to see this is perhaps to argue that the formal expression

\xi = e_{i_0} \wedge \ldots \wedge e_{i_ p} \wedge (a_{j_01} e_1 + \ldots + a_{j_0c}e_ c) \wedge \ldots \wedge (a_{j_{c - p - 1}1} e_1 + \ldots + a_{j_{c - p - 1}c}e_ c)

is 0 as it is an element of the (c + 1)st wedge power of the free module on e_1, \ldots , e_ c and that the expression above is the image of \xi under the Koszul differential sending e_ i \to f_ i. Some details omitted. \square


Comments (0)

There are also:

  • 3 comment(s) on Section 36.6: Cohomology with support in a closed subset

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.