Processing math: 100%

The Stacks project

Lemma 87.21.16. Let S be a scheme. Let P be a local property of morphisms of \textit{WAdm}^{count} which has the cancellation property. Let f : X \to Y and g : Y \to Z be morphisms of locally countably indexed formal algebraic spaces over S. If g \circ f and g satisfies the equivalent conditions of Lemma 87.21.3 then so does f : X \to Y.

Proof. Choose a covering \{ Z_ k \to Z\} as in Definition 87.11.1. For each k choose a covering \{ Y_{kj} \to Z_ k \times _ Z Y\} as in Definition 87.11.1. For each k and j choose a covering \{ X_{kji} \to Y_{kj} \times _ Y X\} as in Definition 87.11.1. Let X_{kji} \to Y_{jk} and Y_{jk} \to Z_ k correspond to arrows B_{kj} \to A_{kji} and C_ k \to B_{kj} of \text{WAdm}^{count}. If g \circ f and g satisfies the equivalent conditions of Lemma 87.21.3 then C_ k \to B_{kj} and C_ k \to A_{kji} satisfy P. Hence B_{kj} \to A_{kji} does too and we conclude. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.