Lemma 88.19.1. Let $A \to B$ be a morphism in $\textit{WAdm}^{Noeth}$ (Formal Spaces, Section 87.21). The following are equivalent:
$A \to B$ satisfies the equivalent conditions of Lemma 88.11.1 and there exists an ideal of definition $I \subset B$ such that $B$ is rig-étale over $(A, I)$, and
$A \to B$ satisfies the equivalent conditions of Lemma 88.11.1 and for all ideals of definition $I \subset A$ the algebra $B$ is rig-étale over $(A, I)$.
Comments (0)