Lemma 59.104.6. Let $\{ f_ i : X_ i \to X\} $ be an fppf covering of schemes. The functor

is an equivalence of categories.

Lemma 59.104.6. Let $\{ f_ i : X_ i \to X\} $ be an fppf covering of schemes. The functor

\[ \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}) \longrightarrow \text{descent data for étale sheaves wrt }\{ f_ i : X_ i \to X\} \]

is an equivalence of categories.

**Proof.**
We have Lemma 59.104.5 for the morphism $f : \coprod X_ i \to X$. Then a formal argument shows that descent data for $f$ are the same thing as descent data for the covering, compare with Descent, Lemma 35.34.5. Details omitted.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)