Lemma 81.3.2. Let S be a scheme. Let B be an algebraic space over S. Let \mathcal{I} \to (\mathit{Sch}/S)_{fppf}, i \mapsto X_ i be a diagram of algebraic spaces over B. Let (X, X_ i \to X) be a cocone for the diagram in the category of algebraic spaces over B (Categories, Remark 4.14.5). If there exists a fpqc covering \{ U_ a \to X\} _{a \in A} such that
for all a \in A we have U_ a = \mathop{\mathrm{colim}}\nolimits X_ i \times _ X U_ a in the category of algebraic spaces over B, and
for all a, b \in A we have U_ a \times _ X U_ b = \mathop{\mathrm{colim}}\nolimits X_ i \times _ X U_ a \times _ X U_ b in the category of algebraic spaces over B,
then X = \mathop{\mathrm{colim}}\nolimits X_ i in the category of algebraic spaces over B.
Comments (2)
Comment #7782 by Laurent Moret-Bailly on
Comment #8023 by Stacks Project on
There are also: