Lemma 81.5.1. Let $S$ be a scheme. Let $f : X \to Y$ be a proper surjective morphism of algebraic spaces over $S$. Any descent datum $(U/X, \varphi )$ relative to $f$ (Descent on Spaces, Definition 74.22.1) with $U$ étale over $X$ is effective (Descent on Spaces, Definition 74.22.10). More precisely, there exists an étale morphism $V \to Y$ of algebraic spaces whose corresponding canonical descent datum is isomorphic to $(U/X, \varphi )$.

Proof. Recall that $U$ gives rise to a representable sheaf $\mathcal{F} = h_ U$ in $\mathop{\mathit{Sh}}\nolimits (X_{spaces, {\acute{e}tale}}) = \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$, see Properties of Spaces, Section 66.18. The descent datum on $U$ relative to $f$ exactly gives a descent datum $(\mathcal{F}, \varphi )$ for étale sheaves with respect to $\{ X \to Y\}$. By Lemma 81.4.5 this descent datum is effective. Let $\mathcal{G}$ be the corresponding sheaf on $Y_{\acute{e}tale}$. By Properties of Spaces, Lemma 66.27.3 we obtain an étale morphism $V \to Y$ of algebraic spaces corresponding to $\mathcal{G}$; we omit the verification of the set theoretic condition1. The given isomorphism $\mathcal{F} \to f_{small}^{-1}\mathcal{G}$ corresponds to an isomorphism $U \to V \times _ Y X$ compatible with the descent datum. $\square$

[1] It follows from the fact that $\mathcal{F}$ satisfies the corresponding condition.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GG0. Beware of the difference between the letter 'O' and the digit '0'.