Lemma 59.84.4. Let $\Lambda$ be a Noetherian ring, let $M$ be a finite $\Lambda$-module which is annihilated by an integer $n > 0$, let $k$ be an algebraically closed field, let $X$ be a separated, finite type scheme of dimension $\leq 1$ over $k$, and let $j : U \to X$ be an open immersion. Then

1. $H^ q_{\acute{e}tale}(X, j_!\underline{M})$ is a finite $\Lambda$-module if $n$ is prime to $\text{char}(k)$,

2. $H^ q_{\acute{e}tale}(X, j_!\underline{M})$ is a finite $\Lambda$-module if $X$ is proper.

Proof. Since $\dim (X) \leq 1$ there is an open $V \subset X$ which is disjoint from $U$ such that $X' = U \cup V$ is dense open in $X$ (details omitted). If $j' : X' \to X$ denotes the inclusion morphism, then we see that $j_!\underline{M}$ is a direct summand of $j'_!\underline{M}$. Hence it suffices to prove the lemma in case $U$ is open and dense in $X$. This case follows from Lemmas 59.84.3 and 59.84.1. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).