The Stacks project

Lemma 59.84.4. Let $\Lambda $ be a Noetherian ring, let $M$ be a finite $\Lambda $-module which is annihilated by an integer $n > 0$, let $k$ be an algebraically closed field, let $X$ be a separated, finite type scheme of dimension $\leq 1$ over $k$, and let $j : U \to X$ be an open immersion. Then

  1. $H^ q_{\acute{e}tale}(X, j_!\underline{M})$ is a finite $\Lambda $-module if $n$ is prime to $\text{char}(k)$,

  2. $H^ q_{\acute{e}tale}(X, j_!\underline{M})$ is a finite $\Lambda $-module if $X$ is proper.

Proof. Since $\dim (X) \leq 1$ there is an open $V \subset X$ which is disjoint from $U$ such that $X' = U \cup V$ is dense open in $X$ (details omitted). If $j' : X' \to X$ denotes the inclusion morphism, then we see that $j_!\underline{M}$ is a direct summand of $j'_!\underline{M}$. Hence it suffices to prove the lemma in case $U$ is open and dense in $X$. This case follows from Lemmas 59.84.3 and 59.84.1. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GJF. Beware of the difference between the letter 'O' and the digit '0'.