Lemma 59.84.3. Let $\Lambda $ be a Noetherian ring, let $k$ be an algebraically closed field, let $X$ be a separated finite type scheme over $k$ of dimension $\leq 1$, let $\mathcal{F}$ be a constructible sheaf of $\Lambda $-modules on $X_{\acute{e}tale}$, and let $j : X' \to X$ be the inclusion of a dense open subscheme. Then $H^ q_{\acute{e}tale}(X, \mathcal{F})$ is a finite $\Lambda $-module if and only if $H^ q_{\acute{e}tale}(X, j_!j^{-1}\mathcal{F})$ is a finite $\Lambda $-module.
Proof. Since $X'$ is dense, we see that $Z = X \setminus X'$ has dimension $0$ and hence is a finite set $Z = \{ x_1, \ldots , x_ n\} $ of $k$-rational points. Consider the short exact sequence
of Lemma 59.70.8. Observe that $H^ q_{\acute{e}tale}(X, i_*i^{-1}\mathcal{F}) = H^ q_{\acute{e}tale}(Z, i^*\mathcal{F})$. Namely, $i : Z \to X$ is a closed immersion, hence finite, hence we have the vanishing of $R^ qi_*$ for $q > 0$ by Proposition 59.55.2, and hence the equality follows from the Leray spectral sequence (Cohomology on Sites, Lemma 21.14.6). Since $Z$ is a disjoint union of spectra of algebraically closed fields, we conclude that $H^ q_{\acute{e}tale}(Z, i^*\mathcal{F}) = 0$ for $q > 0$ and
which is a finite $\Lambda $-module $\mathcal{F}_{x_ i}$ is finite due to the assumption that $\mathcal{F}$ is a constructible sheaf of $\Lambda $-modules. The long exact cohomology sequence gives an exact sequence
and isomorphisms $H^0_{\acute{e}tale}(X, j_!j^{-1}\mathcal{F}) \to H^0_{\acute{e}tale}(X, \mathcal{F})$ for $q > 1$. The lemma follows easily from this. $\square$
Comments (0)