Lemma 61.19.1. With notation as above. Let \mathcal{F} be a sheaf on X_{\acute{e}tale}. The rule
X_{pro\text{-}\acute{e}tale}\longrightarrow \textit{Sets},\quad (f : Y \to X) \longmapsto \Gamma (Y_{\acute{e}tale}, f_{\acute{e}tale}^{-1}\mathcal{F})
is a sheaf and is equal to \epsilon ^{-1}\mathcal{F}. Here f_{\acute{e}tale}: Y_{\acute{e}tale}\to X_{\acute{e}tale} is the morphism of small étale sites constructed in Étale Cohomology, Section 59.34.
Proof.
By Lemma 61.12.2 any pro-étale covering is an fpqc covering. Hence the formula defines a sheaf on X_{pro\text{-}\acute{e}tale} by Étale Cohomology, Lemma 59.39.2. Let a : \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (X_{pro\text{-}\acute{e}tale}) be the functor sending \mathcal{F} to the sheaf given by the formula in the lemma. To show that a = \epsilon ^{-1} it suffices to show that a is a left adjoint to \epsilon _*.
Let \mathcal{G} be an object of \mathop{\mathit{Sh}}\nolimits (X_{pro\text{-}\acute{e}tale}). Recall that \epsilon _*\mathcal{G} is simply given by the restriction of \mathcal{G} to the full subcategory X_{\acute{e}tale}. Let f : Y \to X be an object of X_{pro\text{-}\acute{e}tale}. We view Y_{\acute{e}tale} as a subcategory of X_{pro\text{-}\acute{e}tale}. The restriction maps of the sheaf \mathcal{G} define a map
\epsilon _*\mathcal{G} = \mathcal{G}|_{X_{\acute{e}tale}} \longrightarrow f_{{\acute{e}tale}, *}(\mathcal{G}|_{Y_{\acute{e}tale}})
Namely, for U in X_{\acute{e}tale} the value of f_{{\acute{e}tale}, *}(\mathcal{G}|_{Y_{\acute{e}tale}}) on U is \mathcal{G}(Y \times _ X U) and there is a restriction map \mathcal{G}(U) \to \mathcal{G}(Y \times _ X U). By adjunction this determines a map
f_{\acute{e}tale}^{-1}(\epsilon _*\mathcal{G}) \to \mathcal{G}|_{Y_{\acute{e}tale}}
Putting these together for all f : Y \to X in X_{pro\text{-}\acute{e}tale} we obtain a canonical map a(\epsilon _*\mathcal{G}) \to \mathcal{G}.
Let \mathcal{F} be an object of \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}). It is immediately clear that \mathcal{F} = \epsilon _*a(\mathcal{F}).
We claim the maps \mathcal{F} \to \epsilon _*a(\mathcal{F}) and a(\epsilon _*\mathcal{G}) \to \mathcal{G} are the unit and counit of the adjunction (see Categories, Section 4.24). To see this it suffices to show that the corresponding maps
\mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (X_{pro\text{-}\acute{e}tale})}(a(\mathcal{F}), \mathcal{G}) \to \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})}(\mathcal{F}, \epsilon ^{-1}\mathcal{G})
and
\mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})}(\mathcal{F}, \epsilon ^{-1}\mathcal{G}) \to \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (X_{pro\text{-}\acute{e}tale})}(a(\mathcal{F}), \mathcal{G})
are mutually inverse. We omit the detailed verification.
\square
Comments (2)
Comment #6481 by Owen on
Comment #6554 by Johan on