Lemma 83.13.3. In Situation 83.3.3 suppose given $K_0 \in D(\mathcal{C}_0)$ and an isomorphism

$\alpha : f_{\delta _1^1}^{-1}K_0 \longrightarrow f_{\delta _0^1}^{-1}K_0$

satisfying the cocycle condition. Set $\tau ^ n_ i :  \to [n]$, $0 \mapsto i$ and set $K_ n = f_{\tau ^ n_ n}^{-1}K_0$. Then the $K_ n$ form a cartesian simplicial system of the derived category.

Proof. Please compare with Lemma 83.12.4 and its proof (also to see the cocycle condition spelled out). The construction is analogous to the construction discussed in Descent, Section 35.3 from which we borrow the notation $\tau ^ n_ i :  \to [n]$, $0 \mapsto i$ and $\tau ^ n_{ij} :  \to [n]$, $0 \mapsto i$, $1 \mapsto j$. Given $\varphi : [n] \to [m]$ we define $K_\varphi : f_\varphi ^{-1}K_ n \to K_ m$ using

$\xymatrix{ f_\varphi ^{-1}K_ n \ar@{=}[r] & f_\varphi ^{-1} f_{\tau ^ n_ n}^{-1}K_0 \ar@{=}[r] & f_{\tau ^ m_{\varphi (n)}}^{-1}K_0 \ar@{=}[r] & f_{\tau ^ m_{\varphi (n)m}}^{-1}f_{\delta ^1_1}^{-1}K_0 \ar[d]_{f_{\tau ^ m_{\varphi (n)m}}^{-1}\alpha } \\ & K_ m \ar@{=}[r] & f_{\tau ^ m_ m}^{-1}K_0 \ar@{=}[r] & f_{\tau ^ m_{\varphi (n)m}}^{-1}f_{\delta ^1_0}^{-1}K_0 }$

We omit the verification that the cocycle condition implies the maps compose correctly (in their respective derived categories) and hence give rise to a simplicial system in the derived category. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).