The Stacks project

Remark 91.13.7. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}), \mathcal{O}_\mathcal {B})$, $g : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C})$, $\mathcal{F}$, $\mathcal{G}$, $c : g^*\mathcal{F} \to \mathcal{G}$, $0 \to \mathcal{F} \to \mathcal{O}_{\mathcal{C}'} \to \mathcal{O}_\mathcal {C} \to 0$, $\xi \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_\mathcal {C}}( \mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {C}/\mathcal{O}_\mathcal {B}}, \mathcal{F})$, $0 \to \mathcal{G} \to \mathcal{O}_{\mathcal{D}'} \to \mathcal{O}_\mathcal {D} \to 0$, and $\zeta \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_\mathcal {D}}( \mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {D}/\mathcal{O}_\mathcal {B}}, \mathcal{G})$ be as in Lemma 91.13.6. Using pushout along $c : g^{-1}\mathcal{F} \to \mathcal{G}$ we can construct an extension

\[ \xymatrix{ 0 \ar[r] & \mathcal{G} \ar[r] & \mathcal{O}'_1 \ar[r] & g^{-1}\mathcal{O}_\mathcal {C} \ar[r] & 0 \\ 0 \ar[r] & g^{-1}\mathcal{F} \ar[u]^ c \ar[r] & g^{-1}\mathcal{O}_{\mathcal{C}'} \ar[u] \ar[r] & g^{-1}\mathcal{O}_\mathcal {C} \ar@{=}[u] \ar[r] & 0 } \]

Using pullback along $g^\sharp : g^{-1}\mathcal{O}_\mathcal {C} \to \mathcal{O}_\mathcal {D}$ we can construct an extension

\[ \xymatrix{ 0 \ar[r] & \mathcal{G} \ar[r] & \mathcal{O}_{\mathcal{D}'} \ar[r] & \mathcal{O}_\mathcal {D} \ar[r] & 0 \\ 0 \ar[r] & \mathcal{G} \ar@{=}[u] \ar[r] & \mathcal{O}'_2 \ar[u] \ar[r] & g^{-1}\mathcal{O}_\mathcal {C} \ar[u] \ar[r] & 0 } \]

A diagram chase tells us that there exists a morphism $g' : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_{\mathcal{D}'}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_{\mathcal{C}'})$ over $(\mathop{\mathit{Sh}}\nolimits (\mathcal{B}), \mathcal{O}_\mathcal {B})$ compatible with $g$ and $c$ if and only if $\mathcal{O}'_1$ is isomorphic to $\mathcal{O}'_2$ as $g^{-1}f^{-1}\mathcal{O}_\mathcal {B}$-algebra extensions of $g^{-1}\mathcal{O}_\mathcal {C}$ by $\mathcal{G}$. By Lemma 91.13.4 these extensions are classified by the LHS of

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{g^{-1}\mathcal{O}_\mathcal {C}}( \mathop{N\! L}\nolimits _{g^{-1}\mathcal{O}_\mathcal {C}/g^{-1}f^{-1}\mathcal{O}_\mathcal {B}}, \mathcal{G}) = \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_\mathcal {D}}( Lg^*\mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {C}/\mathcal{O}_\mathcal {B}}, \mathcal{G}) \]

Here the equality comes from tensor-hom adjunction and the equalities

\[ \mathop{N\! L}\nolimits _{g^{-1}\mathcal{O}_\mathcal {C}/g^{-1}f^{-1}\mathcal{O}_\mathcal {B}} = g^{-1}\mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {C}/\mathcal{O}_\mathcal {B}} \quad \text{and}\quad Lg^*\mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {C}/\mathcal{O}_\mathcal {B}} = g^{-1}\mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {C}/\mathcal{O}_\mathcal {B}} \otimes _{g^{-1}\mathcal{O}_ X}^\mathbf {L} \mathcal{O}_ Y \]

For the first of these see Modules on Sites, Lemma 18.35.3; the second follows from the definition of derived pullback. Thus, in order to see that Lemma 91.13.6 is true, it suffices to show that $\mathcal{O}'_1$ corresponds to the image of $\xi $ and that $\mathcal{O}'_2$ correspond to the image of $\zeta $. The correspondence between $\xi $ and $\mathcal{O}'_1$ is immediate from the construction of the class $\xi $ in Remark 91.13.5. For the correspondence between $\zeta $ and $\mathcal{O}'_2$, we first choose a commutative diagram

\[ \xymatrix{ \mathcal{E} \ar[d]_{\beta '} \ar[rd]^\beta \\ \mathcal{O}_{\mathcal{D}'} \ar[r] & \mathcal{O}_\mathcal {D} } \]

such that $g^{-1}f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}] \to \mathcal{O}_\mathcal {D}$ is surjective with kernel $\mathcal{K}$. Next choose a commutative diagram

\[ \xymatrix{ \mathcal{E} \ar[d]_{\beta '} & \mathcal{E}' \ar[l]^\varphi \ar[d]_{\alpha '} \ar[rd]^\alpha \\ \mathcal{O}_{\mathcal{D}'} & \mathcal{O}'_2 \ar[l] \ar[r] & g^{-1}\mathcal{O}_\mathcal {C} } \]

such that $g^{-1}f^{-1}\mathcal{O}_\mathcal {B}[\mathcal{E}'] \to g^{-1}\mathcal{O}_\mathcal {C}$ is surjective with kernel $\mathcal{J}$. (For example just take $\mathcal{E}' = \mathcal{E} \amalg \mathcal{O}'_2$ as a sheaf of sets.) The map $\varphi $ induces a map of complexes $\mathop{N\! L}\nolimits (\alpha ) \to \mathop{N\! L}\nolimits (\beta )$ (notation as in Modules, Section 17.31) and in particular $\bar\varphi : \mathcal{J}/\mathcal{J}^2 \to \mathcal{K}/\mathcal{K}^2$. Then $\mathop{N\! L}\nolimits (\alpha ) \cong \mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {D}/\mathcal{O}_\mathcal {B}}$ and $\mathop{N\! L}\nolimits (\beta ) \cong \mathop{N\! L}\nolimits _{g^{-1}\mathcal{O}_\mathcal {C}/g^{-1}f^{-1}\mathcal{O}_\mathcal {B}}$ and the map of complexes $\mathop{N\! L}\nolimits (\alpha ) \to \mathop{N\! L}\nolimits (\beta )$ represents the map $Lg^*\mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {C}/\mathcal{O}_\mathcal {B}} \to \mathop{N\! L}\nolimits _{\mathcal{O}_\mathcal {D}/\mathcal{O}_\mathcal {B}}$ used in the statement of Lemma 91.13.6 (see first part of its proof). Now $\zeta $ corresponds to the class of the map $\mathcal{K}/\mathcal{K}^2 \to \mathcal{G}$ induced by $\beta '$, see Remark 91.13.5. Similarly, the extension $\mathcal{O}'_2$ corresponds to the map $\mathcal{J}/\mathcal{J}^2 \to \mathcal{G}$ induced by $\alpha '$. The commutative diagram above shows that this map is the composition of the map $\mathcal{K}/\mathcal{K}^2 \to \mathcal{G}$ induced by $\beta '$ with the map $\bar\varphi : \mathcal{J}/\mathcal{J}^2 \to \mathcal{K}/\mathcal{K}^2$. This proves the compatibility we were looking for.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GQ8. Beware of the difference between the letter 'O' and the digit '0'.