Lemma 103.10.4. Let \mathcal{X} be an algebraic stack. Let x be an object of \mathcal{X} lying over the scheme U such that x : U \to \mathcal{X} is flat. Then for \mathcal{F} in \mathit{QCoh}^{fbc}(\mathcal{O}_\mathcal {X}) we have Q(\mathcal{F})|_{U_{\acute{e}tale}} = \mathcal{F}|_{U_{\acute{e}tale}}.
Proof. True because the kernel and cokernel of Q(\mathcal{F}) \to \mathcal{F} are parasitic, see Lemma 103.10.2. \square
Comments (0)