Lemma 103.10.9. Let $f : \mathcal{X} \to \mathcal{Y}$ be a flat morphism of algebraic stacks. Let $\mathcal{F}$ be an $\mathcal{O}_\mathcal {Y}$-module of finite presentation and let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_\mathcal {Y}$-module. Then $f^*hom(\mathcal{F}, \mathcal{G}) = hom(f^*\mathcal{F}, f^*\mathcal{G})$ with notation as in Lemma 103.10.8.
Proof. We have $f^*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {Y}}(\mathcal{F}, \mathcal{G}) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(f^*\mathcal{F}, f^*\mathcal{G})$ by Modules on Sites, Lemma 18.31.4. (Observe that this step is not where the flatness of $f$ is used as the morphism of ringed topoi associated to $f$ is always flat, see Sheaves on Stacks, Remark 96.6.3.) Then apply Lemma 103.10.3 (and here we do use flatness of $f$). $\square$
Comments (0)