Lemma 103.10.8. Let \mathcal{X} be an algebraic stack. Let \mathcal{F} be an \mathcal{O}_\mathcal {X}-module of finite presentation and let \mathcal{G} be a quasi-coherent \mathcal{O}_\mathcal {X}-module. The internal homs \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G}) computed in \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}) or \textit{Mod}(\mathcal{O}_\mathcal {X}) agree and the common value is an object of \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}). The quasi-coherent module hom(\mathcal{F}, \mathcal{G}) = Q(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})) has the following universal property
\mathop{\mathrm{Hom}}\nolimits _\mathcal {X}(\mathcal{H}, hom(\mathcal{F}, \mathcal{G})) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {X}(\mathcal{H} \otimes _{\mathcal{O}_\mathcal {X}} \mathcal{F}, \mathcal{G})
for \mathcal{H} in \mathit{QCoh}(\mathcal{O}_\mathcal {X}).
Proof.
The construction of \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G}) in Modules on Sites, Section 18.27 depends only on \mathcal{F} and \mathcal{G} as presheaves of modules; the output \mathop{\mathcal{H}\! \mathit{om}}\nolimits is a sheaf for the fppf topology because \mathcal{F} and \mathcal{G} are assumed sheaves in the fppf topology, see Modules on Sites, Lemma 18.27.1. By Sheaves on Stacks, Lemma 96.12.4 we see that \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G}) is locally quasi-coherent. By Lemma 103.7.2 we see that \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G}) has the flat base change property. Hence \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G}) is an object of \textit{LQCoh}^{fbc}(\mathcal{O}_\mathcal {X}) and it makes sense to apply the functor Q of Lemma 103.10.1 to it. By the universal property of Q we have
\mathop{\mathrm{Hom}}\nolimits _\mathcal {X}(\mathcal{H}, Q(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G}))) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {X}(\mathcal{H}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G}))
for \mathcal{H} quasi-coherent, hence the displayed formula of the lemma follows from Modules on Sites, Lemma 18.27.6.
\square
Comments (0)