The Stacks project

Lemma 103.13.2. Let $f : \mathcal{X} \to \mathcal{Y}$ be a quasi-compact and quasi-separated morphism of algebraic stacks. Let $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ be a filtered colimit of abelian sheaves on $\mathcal{X}$. Then for any $p \geq 0$ we have

\[ R^ pf_*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits R^ pf_*\mathcal{F}_ i. \]

The same is true for abelian sheaves on $\mathcal{X}_{\acute{e}tale}$ taking higher direct images in the étale topology.

Proof. We will prove this for the fppf topology; the proof for the étale topology is the same. Recall that $R^ if_*\mathcal{F}$ is the sheaf on $\mathcal{Y}_{fppf}$ associated to the presheaf

\[ (y : V \to \mathcal{Y}) \longmapsto H^ i(V \times _{y, \mathcal{Y}} \mathcal{X}, \text{pr}^{-1}\mathcal{F}) \]

See Sheaves on Stacks, Lemma 96.21.2. Recall that the colimit is the sheaf associated to the presheaf colimit. When $V$ is affine, the fibre product $V \times _\mathcal {Y} \mathcal{X}$ is quasi-compact and quasi-separated. Hence we can apply Lemma 103.13.1 to $H^ p(V \times _\mathcal {Y} \mathcal{X}, -)$ where $V$ is affine. Since every $V$ has an fppf covering by affine objects this proves the lemma. Some details omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GQW. Beware of the difference between the letter 'O' and the digit '0'.