Lemma 103.17.3. Let $\mathcal{X}$ be a locally Noetherian algebraic stack. The module $\mathcal{O}_\mathcal {X}$ is coherent, any invertible $\mathcal{O}_\mathcal {X}$-module is coherent, and more generally any finite locally free $\mathcal{O}_\mathcal {X}$-module is coherent.
Proof. Follows from the definition and Cohomology of Spaces, Lemma 69.12.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)