Lemma 87.36.1. Let $S$ be a scheme. Suppose given a directed set $\Lambda $ and a system of affine formal algebraic spaces $(X_\lambda , f_{\lambda \mu })$ over $\Lambda $ where each $f_{\lambda \mu } : X_\lambda \to X_\mu $ is a closed immersion inducing an isomorphism $X_{\lambda , red} \to X_{\mu , red}$. Then $X = \mathop{\mathrm{colim}}\nolimits _{\lambda \in \Lambda } X_\lambda $ is an affine formal algebraic space over $S$.
Proof. We may write $X_\lambda = \mathop{\mathrm{colim}}\nolimits _{\omega \in \Omega _\lambda } X_{\lambda , \omega }$ as the colimit of affine schemes over a directed set $\Omega _\lambda $ such that the transition morphisms $X_{\lambda , \omega } \to X_{\lambda , \omega '}$ are thickenings. For each $\lambda , \mu \in \Lambda $ and $\omega \in \Omega _\lambda $, with $\mu \geq \lambda $ there exists an $\omega ' \in \Omega _\mu $ such that the morphism $X_{\lambda , \omega } \to X_\mu $ factors through $X_{\mu , \omega '}$, see Lemma 87.9.4. Then the morphism $X_{\lambda , \omega } \to X_{\mu , \omega '}$ is a closed immersion inducing an isomorphism on reductions and hence a thickening. Set $\Omega = \coprod _{\lambda \in \Lambda } \Omega _\lambda $ and say $(\lambda , \omega ) \leq (\mu , \omega ')$ if and only if $\lambda \leq \mu $ and $X_{\lambda , \omega } \to X_\mu $ factors through $X_{\mu , \omega '}$. It follows from the above that $\Omega $ is a directed set and that $X = \mathop{\mathrm{colim}}\nolimits _{\lambda \in \Lambda } X_\lambda = \mathop{\mathrm{colim}}\nolimits _{(\lambda , \omega ) \in \Omega } X_{\lambda , \omega }$. This finishes the proof. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)