The Stacks project

Lemma 21.43.10. Let $g : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ be as above. Then the functor $Lg^* : D(\mathcal{O}) \to D(\mathcal{O}')$ maps $\mathit{QC}(\mathcal{O})$ into $\mathit{QC}(\mathcal{O}')$.

Proof. Let $U' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}')$ with image $U = u(U')$ in $\mathcal{C}$. Let $pt$ denote the category with a single object and a single morphism. Denote $(\mathop{\mathit{Sh}}\nolimits (pt), \mathcal{O}'(U'))$ and $(\mathop{\mathit{Sh}}\nolimits (pt), \mathcal{O}(U))$ the ringed topoi as indicated. Of course we identify the derived category of modules on these ringed topoi with $D(\mathcal{O}'(U'))$ and $D(\mathcal{O}(U))$. Then we have a commutative diagram of ringed topoi

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (pt), \mathcal{O}'(U')) \ar[rr]_{U'} \ar[d] & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \ar[d]^ g \\ (\mathop{\mathit{Sh}}\nolimits (pt), \mathcal{O}(U)) \ar[rr]^ U & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) } \]

Pullback along the lower horizontal morphism sends $K$ in $D(\mathcal{O})$ to $R\Gamma (U, K)$. Pullback by the left vertical arrow sends $M$ to $M \otimes _{\mathcal{O}(U)}^\mathbf {L} \mathcal{O}'(U')$. Going around the diagram either direction produces the same result (Lemma 21.18.3) and hence we conclude

\[ R\Gamma (U', Lg^*K) = R\Gamma (U, K) \otimes _{\mathcal{O}(U)}^\mathbf {L} \mathcal{O}'(U') \]

Finally, let $f' : U' \to V'$ be a morphism in $\mathcal{C}'$ and denote $f = u(f') : U = u(U') \to V = u(V')$ the image in $\mathcal{C}$. If $K$ is in $\mathit{QC}(\mathcal{O})$ then we have

\begin{align*} R\Gamma (V', Lg^*K) \otimes _{\mathcal{O}'(V')}^\mathbf {L} \mathcal{O}'(U') & = R\Gamma (V, K) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}'(V') \otimes _{\mathcal{O}'(V')}^\mathbf {L} \mathcal{O}'(U') \\ & = R\Gamma (V, K) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}'(U') \\ & = R\Gamma (V, K) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U) \otimes _{\mathcal{O}(U)}^\mathbf {L} \mathcal{O}'(U') \\ & = R\Gamma (U, K) \otimes _{\mathcal{O}(U)}^\mathbf {L} \mathcal{O}'(U') \\ & = R\Gamma (U', Lg^*K) \end{align*}

as desired. Here we have used the observation above both for $U'$ and $V'$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GZ1. Beware of the difference between the letter 'O' and the digit '0'.