The Stacks project

Proposition 95.26.5. Let $S$ be a scheme. Let $X = \text{Spf}(A)$ where $A$ is an an adic Noetherian topological $S$-algebra with ideal of definition $I$, see More on Algebra, Definition 15.36.1 and Formal Spaces, Definition 86.9.9. Let $p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ the be category fibred in sets associated to the functor $X$, see Categories, Example 4.38.5. Then $\mathit{QC}(\mathcal{X})$ is canonically equivalent to the category $D_{comp}(A, I)$ of objects of $D(A)$ which are derived complete with respect to $I$.

Proof. Recall that $X = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Spec}}(A/I^ n)$ as an fppf sheaf. An object of $\mathcal{X}_{affine}$ is the same thing as an affine scheme $U = \mathop{\mathrm{Spec}}(R)$ with a given morphism $f : U \to X$. By Formal Spaces, Lemma 86.9.4 there exists an $n \geq 1$ such that $f$ factors through the monomorphism $\mathop{\mathrm{Spec}}(A/I^ n) \to X$. Consider the full subcategory $\mathcal{C} \subset \mathcal{X}_{affine}$ consisting of the objects $\mathop{\mathrm{Spec}}(A/I^ n) \to X$. By the remarks just made and Differential Graded Sheaves, Lemma 24.34.1 restriction to $\mathcal{C}$ is an exact equivalence $\mathit{QC}(\mathcal{X}) \to \mathit{QC}(\mathcal{C}, \mathcal{O}|_\mathcal {C})$. For simplicity, let us assume that $I^ n \not= I^{n + 1}$ for all $n \geq 1$. Then $(\mathcal{C}, \mathcal{O}|_\mathcal {C})$ is isomorphic as a ringed site to the ringed site $(\mathbf{N}, (A/I^ n))$, see Differential Graded Sheaves, Section 24.35. Hence we conclude by Differential Graded Sheaves, Proposition 24.35.4. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H0L. Beware of the difference between the letter 'O' and the digit '0'.