Lemma 96.26.6. Let $S$ be a scheme. Let $\mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids. The comparison morphism $\epsilon : \mathcal{X}_{affine, fppf} \to \mathcal{X}_{affine}$ satisfies the assumptions and conclusions of Cohomology on Sites, Lemma 21.43.12.
Proof. The proof is exactly the same as the proof of Lemma 96.26.3. Assumption (1) holds by definition of $\mathcal{X}_{affine}$. For condition (2) we use that for $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X})$ lying over the affine scheme $U = p(x)$ we have an equivalence $\mathcal{X}_{affine, {\acute{e}tale}}/x = (\textit{Aff}/U)_{\acute{e}tale}$ compatible with structure sheaves; see discussion in Section 96.9. Thus it suffices to show: given an affine scheme $U = \mathop{\mathrm{Spec}}(R)$ and a complex of $R$-modules $M^\bullet $ the total cohomology of the complex of modules on $(\textit{Aff}/U)_{fppf}$ associated to $M^\bullet $ is quasi-isomorphic to $M^\bullet $. This is Étale Cohomology, Lemma 59.101.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)