Lemma 13.40.3. Let $\mathcal{D}$ be a triangulated category. Let $\mathcal{B} \subset \mathcal{D}$ be a full subcategory invariant under all shifts. Consider a distinguished triangle
of $\mathcal{D}$. The following are equivalent
$X$ is in ${}^\perp \mathcal{B}$, and
$\mathop{\mathrm{Hom}}\nolimits (Y, B) = \mathop{\mathrm{Hom}}\nolimits (Z, B)$ for all $B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B})$.
Comments (0)
There are also: