Proposition 13.40.10. Let $\mathcal{D}$ be a triangulated category. Let $\mathcal{A} \subset \mathcal{D}$ and $\mathcal{B} \subset \mathcal{D}$ be subcategories. The following are equivalent

$\mathcal{A}$ is right admissible and $\mathcal{B} = \mathcal{A}^\perp $,

$\mathcal{B}$ is left admissible and $\mathcal{A} = {}^\perp \mathcal{B}$,

$\mathop{\mathrm{Hom}}\nolimits (A, B) = 0$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$ and for every $X$ in $\mathcal{D}$ there exists a distinguished triangle $A \to X \to B \to A[1]$ in $\mathcal{D}$ with $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

If this is true, then $\mathcal{A} \to \mathcal{D}/\mathcal{B}$ and $\mathcal{B} \to \mathcal{D}/\mathcal{A}$ are equivalences of triangulated categories, the right adjoint to the inclusion functor $\mathcal{A} \to \mathcal{D}$ is $\mathcal{D} \to \mathcal{D}/\mathcal{B} \to \mathcal{A}$, and the left adjoint to the inclusion functor $\mathcal{B} \to \mathcal{D}$ is $\mathcal{D} \to \mathcal{D}/\mathcal{A} \to \mathcal{B}$.

**Proof.**
The equivalence between (1), (2), and (3) follows in a straighforward manner from Lemmas 13.40.7 and 13.40.8 (small detail omitted). Denote $v : \mathcal{D} \to \mathcal{A}$ the right adjoint of the inclusion functor $i : \mathcal{A} \to \mathcal{D}$. It is immediate that $\mathop{\mathrm{Ker}}(v) = \mathcal{A}^\perp = \mathcal{B}$. Thus $v$ factors over a functor $\overline{v} : \mathcal{D}/\mathcal{B} \to \mathcal{A}$ by the universal property of the quotient. Since $v \circ i = \text{id}_\mathcal {A}$ by Categories, Lemma 4.24.4 we see that $\overline{v}$ is a left quasi-inverse to $\overline{i} : \mathcal{A} \to \mathcal{D}/\mathcal{B}$. We claim also the composition $\overline{i} \circ \overline{v}$ is isomorphic to $\text{id}_{\mathcal{D}/\mathcal{B}}$. Namely, suppose we have $X$ fitting into a distinguished triangle $A \to X \to B \to A[1]$ as in (3). Then $v(X) = A$ as was seen in the proof of Lemma 13.40.7. Viewing $X$ as an object of $\mathcal{D}/\mathcal{B}$ we have $\overline{i}(\overline{v}(X)) = A$ and there is a functorial isomorphism $\overline{i}(\overline{v}(X)) = A \to X$ in $\mathcal{D}/\mathcal{B}$. Thus we find that indeed $\overline{v} : \mathcal{D}/\mathcal{B} \to \mathcal{A}$ is an equivalence. To show that $\mathcal{B} \to \mathcal{D}/\mathcal{A}$ is an equivalence and the left adjoint to the inclusion functor $\mathcal{B} \to \mathcal{D}$ is $\mathcal{D} \to \mathcal{D}/\mathcal{A} \to \mathcal{B}$ is dual to what we just said.
$\square$

## Comments (0)

There are also: