The Stacks project

Lemma 84.8.5. In Situation 84.3.3. Let $K$ be an object of $D(\mathcal{C}_{total})$.

  1. If $H^{-p}(\mathcal{C}_ p, K_ p) = 0$ for all $p \geq 0$, then $H^0(\mathcal{C}_{total}, K) = 0$.

  2. If $R\Gamma (\mathcal{C}_ p, K_ p) = 0$ for all $p \geq 0$, then $R\Gamma (\mathcal{C}_{total}, K) = 0$.

Proof. With notation as in Remark 84.8.4 we see that $R\Gamma (\mathcal{C}_{total}, K)$ is represented by $\text{Tot}_\pi (A^{\bullet , \bullet })$. The assumption in (1) tells us that $H^{-p}(A^{p, \bullet }) = 0$. Thus the vanishing in (1) follows from More on Algebra, Lemma 15.103.1. Part (2) follows from part (1) and taking shifts. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H0W. Beware of the difference between the letter 'O' and the digit '0'.