Lemma 17.23.4. Let (X,\mathcal{O}_ X) be a ringed space. If \mathcal{O}_ X and \mathcal{F} are coherent, then so is \text{Ann}_{\mathcal{O}_ X}(\mathcal{F}).
Proof. Since \text{Ann}_{\mathcal{O}_ X}(\mathcal{F}) is the kernel of \mathcal{O}_ X \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F}) by Lemma 17.12.4 it suffices to show that \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F}) is coherent. This follows from Lemma 17.22.6 and the fact that \mathcal{F} is coherent and a fortiori finitely presented (Lemma 17.12.2). \square
Comments (0)
There are also: