The Stacks project

17.23 The annihilator of a sheaf of modules

Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. There is a canonical map of sheaves of $\mathcal{O}_ X$-modules

\[ \mathcal{O}_ X \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F}) \]

which sends a local section $f \in \mathcal{O}_ X(U)$ to the map $f : \mathcal{F}|_ U \to \mathcal{F}|_ U$ given by multiplication by $f$.

Definition 17.23.1. Let $(X, \mathcal{O}_ X)$ be a ringed space and let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. The annihilator of $\mathcal{F}$, denoted $\text{Ann}_{\mathcal{O}_ X}(\mathcal{F})$ is the kernel of the map $\mathcal{O}_ X \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F})$ discussed above.

For each $x\in X$, there is an inclusion of ideals of $\mathcal{O}_{X, x}$:

17.23.1.1
\begin{equation} \label{modules-equation-inclusion-of-annihilator-ideals} (\text{Ann}_{\mathcal{O}_ X}(\mathcal{F}))_ x \subset \text{Ann}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) \end{equation}

since after all any section of $\text{Ann}_{\mathcal{O}_ X}(\mathcal{F})$ will annihilate the stalks of $\mathcal{F}$ at all points at which it is defined. Here is a simple situation in which (17.23.1.1) becomes an equality.

Lemma 17.23.2. Let $(X, \mathcal{O}_ X)$ be a ringed space and let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. If $\mathcal{F}$ is of finite type, then $(\text{Ann}_{\mathcal{O}_ X}(\mathcal{F}))_ x = \text{Ann}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x)$.

Proof. By Lemma 17.22.4 the map

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F})_ x \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X,x}}(\mathcal{F}_ x, \mathcal{F}_ x) \]

is injective. Thus any section $f$ of $\mathcal{O}_ X$ over an open neighbourhood $U$ of $x$ which acts as zero on $\mathcal{F}_ x$ will act as zero on $\mathcal{F}|_ V$ for some $U \supset V \ni x$ open. Hence the inclusion (17.23.1.1) is an equality. $\square$

Lemma 17.23.3. Let $(X, \mathcal{O}_ X)$ be a ringed space, let $\mathcal{F}$ be an $\mathcal{O}_ X$-module and let $\mathcal{I} \subset \mathcal{O}_ X$ be an ideal sheaf. If $\mathcal{I} \subset \text{Ann}_{\mathcal{O}_ X}(\mathcal{F})$, then $\mathcal{F}$ has a natural $\mathcal{O}_ X/\mathcal{I}$-module structure which agrees with the usual commutative algebra construction on stalks.

Proof. Applying the universal property of the cokernel of the inclusion $\mathcal{I} \to \mathcal{O}_ X$, we obtain a commutative diagram

\[ \xymatrix{ \mathcal{O}_ X \ar[r] \ar[d] & \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F}) \\ \mathcal{O}_ X/\mathcal{I} \ar@{-->}[ur] } \]

of $\mathcal{O}_ X$-modules. By Lemma 17.22.1 the resulting map $\mathcal{O}_ X/\mathcal{I} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F})$ corresponds to a map of $\mathcal{O}_ X$-modules

\[ \mathcal{O}_ X/\mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{F} \longrightarrow \mathcal{F} \]

which means we have an $\mathcal{O}_ X/\mathcal{I}$-module structure on $\mathcal{F}$ compatible with the given $\mathcal{O}_ X$-module structure. We omit the verification of the statement on stalks. $\square$

Lemma 17.23.4. Let $(X,\mathcal{O}_ X)$ be a ringed space. If $\mathcal{O}_ X$ and $\mathcal{F}$ are coherent, then so is $\text{Ann}_{\mathcal{O}_ X}(\mathcal{F})$.

Proof. Since $\text{Ann}_{\mathcal{O}_ X}(\mathcal{F})$ is the kernel of $\mathcal{O}_ X \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F})$ by Lemma 17.12.4 it suffices to show that $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{F})$ is coherent. This follows from Lemma 17.22.6 and the fact that $\mathcal{F}$ is coherent and a fortiori finitely presented (Lemma 17.12.2). $\square$


Comments (2)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H2G. Beware of the difference between the letter 'O' and the digit '0'.