Lemma 58.31.2. Let X be a locally Noetherian scheme. Let U \subset X be open and dense. Let Y \to U be a finite étale morphism. Assume
Y is unramified over X in codimension 1, and
\mathcal{O}_{X, x} is regular for all x \in X \setminus U.
Then there exists a finite étale morphism Y' \to X whose restriction to X \setminus D is Y.
Proof.
Let \xi \in X \setminus U be a generic point of an irreducible component of X \setminus U of codimension 1. Then \mathcal{O}_{X, \xi } is a discrete valuation ring. As in the discussion above, write Y \times _ U \mathop{\mathrm{Spec}}(K_\xi ) = \mathop{\mathrm{Spec}}(L_\xi ). Denote B_\xi the integral closure of \mathcal{O}_{X, \xi } in L_\xi . Our assumption that Y is unramified over X in codimension 1 signifies that \mathcal{O}_{X, \xi } \to B_\xi is finite étale. Thus we get Y_\xi \to \mathop{\mathrm{Spec}}(\mathcal{O}_{X, \xi }) finite étale and an isomorphism
Y \times _ U \mathop{\mathrm{Spec}}(K_\xi ) \cong Y_\xi \times _{\mathop{\mathrm{Spec}}(\mathcal{O}_{X, \xi })} \mathop{\mathrm{Spec}}(K_\xi )
over \mathop{\mathrm{Spec}}(K_\xi ). By Limits, Lemma 32.20.3 we find an open subscheme U \subset U' \subset X containing \xi and a morphism Y' \to U' of finite presentation whose restriction to U recovers Y and whose restriction to \mathop{\mathrm{Spec}}(\mathcal{O}_{X, \xi }) recovers Y_\xi . Finally, the morphism Y' \to U' is finite étale after possible shrinking U' to a smaller open by Limits, Lemma 32.20.4. Repeating the argument with the other generic points of X \setminus U of codimension 1 we may assume that we have a finite étale morphism Y' \to U' extending Y \to U to an open subscheme containing U' \subset X containing U and all codimension 1 points of X \setminus U. We finish by applying Lemma 58.21.6 to Y' \to U'. Namely, all local rings \mathcal{O}_{X, x} for x \in X \setminus U' are regular and have \dim (\mathcal{O}_{X, x}) \geq 2. Hence we have purity for \mathcal{O}_{X, x} by Lemma 58.21.3.
\square
Comments (1)
Comment #9912 by Kazuki Masugi on
There are also: