Lemma 57.6.4. Let $X$ be a proper scheme over a field $k$ which is regular. Let $G : D_{perf}(\mathcal{O}_ X) \to \text{Vect}_ k$ be a $k$-linear homological functor such that

\[ \sum \nolimits _{n \in \mathbf{Z}} \dim _ k G(E[n]) < \infty \]

for all $E \in D_{perf}(\mathcal{O}_ X)$. Then $G$ is isomorphic to a functor of the form $E \mapsto \mathop{\mathrm{Hom}}\nolimits _ X(K, E)$ for some $K \in D_{perf}(\mathcal{O}_ X)$.

**Proof.**
Consider the contravariant functor $E \mapsto E^\vee $ on $D_{perf}(\mathcal{O}_ X)$, see Cohomology, Lemma 20.50.5. This functor is an exact anti-self-equivalence of $D_{perf}(\mathcal{O}_ X)$. Hence we may apply Theorem 57.6.3 to the functor $F(E) = G(E^\vee )$ to find $K \in D_{perf}(\mathcal{O}_ X)$ such that $G(E^\vee ) = \mathop{\mathrm{Hom}}\nolimits _ X(E, K)$. It follows that $G(E) = \mathop{\mathrm{Hom}}\nolimits _ X(E^\vee , K) = \mathop{\mathrm{Hom}}\nolimits _ X(K^\vee , E)$ and we conclude that taking $K^\vee $ works.
$\square$

## Comments (0)