Lemma 57.6.1. Let $\mathcal{D}$ be a triangulated category. Let $\mathcal{D}' \subset \mathcal{D}$ be a full triangulated subcategory. Let $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$. The category of arrows $E \to X$ with $E \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}')$ is filtered.

## 57.6 A representability theorem

The material in this section is taken from [BvdB].

Let $\mathcal{T}$ be a $k$-linear triangulated category. In this section we consider $k$-linear cohomological functors $H$ from $\mathcal{T}$ to the category of $k$-vector spaces. This will mean $H$ is a functor

which is $k$-linear such that for any distinguished triangle $X \to Y \to Z$ in $\mathcal{T}$ the sequence $H(Z) \to H(Y) \to H(X)$ is an exact sequence of $k$-vector spaces. See Derived Categories, Definition 13.3.5 and Differential Graded Algebra, Section 22.24.

**Proof.**
We check the conditions of Categories, Definition 4.19.1. The category is nonempty because it contains $0 \to X$. If $E_ i \to X$, $i = 1, 2$ are objects, then $E_1 \oplus E_2 \to X$ is an object and there are morphisms $(E_ i \to X) \to (E_1 \oplus E_2 \to X)$. Finally, suppose that $a, b : (E \to X) \to (E' \to X)$ are morphisms. Choose a distinguished triangle $E \xrightarrow {a - b} E' \to E''$ in $\mathcal{D}'$. By Axiom TR3 we obtain a morphism of triangles

and we find that the resulting arrow $(E' \to X) \to (E'' \to X)$ equalizes $a$ and $b$. $\square$

Lemma 57.6.2. Let $k$ be a field. Let $\mathcal{D}$ be a $k$-linear triangulated category which has direct sums and is compactly generated. Denote $\mathcal{D}_ c$ the full subcategory of compact objects. Let $H : \mathcal{D}_ c^{opp} \to \text{Vect}_ k$ be a $k$-linear cohomological functor such that $\dim _ k H(X) < \infty $ for all $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}_ c)$. Then $H$ is isomorphic to the functor $X \mapsto \mathop{\mathrm{Hom}}\nolimits (X, Y)$ for some $Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$.

**Proof.**
We will use Derived Categories, Lemma 13.37.2 without further mention. Denote $G : \mathcal{D}_ c \to \text{Vect}_ k$ the $k$-linear homological functor which sends $X$ to $H(X)^\vee $. For any object $Y$ of $\mathcal{D}$ we set

The colimit is filtered by Lemma 57.6.1. We claim that $G'$ is a $k$-linear homological functor, the restriction of $G'$ to $\mathcal{D}_ c$ is $G$, and $G'$ sends direct sums to direct sums.

Namely, suppose that $Y_1 \to Y_2 \to Y_3$ is a distinguished triangle. Let $\xi \in G'(Y_2)$ map to zero in $G'(Y_3)$. Since the colimit is filtered $\xi $ is represented by some $X \to Y_2$ with $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}_ c)$ and $g \in G(X)$. The fact that $\xi $ maps to zero in $G'(Y_3)$ means the composition $X \to Y_2 \to Y_3$ factors as $X \to X' \to Y_3$ with $X' \in \mathcal{D}_ c$ and $g$ mapping to zero in $G(X')$. Choose a distinguished triangle $X'' \to X \to X'$. Then $X'' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}_ c)$. Since $G$ is homological we find that $g$ is the image of some $g'' \in G'(X'')$. By Axiom TR3 the maps $X \to Y_2$ and $X' \to Y_3$ fit into a morphism of distinguished triangles $(X'' \to X \to X') \to (Y_1 \to Y_2 \to Y_3)$ and we find that indeed $\xi $ is the image of the element of $G'(Y_1)$ represented by $X'' \to Y_1$ and $g'' \in G(X'')$.

If $Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}_ c)$, then $\text{id} : Y \to Y$ is the final object in the category of arrows $X \to Y$ with $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}_ c)$. Hence we see that $G'(Y) = G(Y)$ in this case and the statement on restriction holds. Let $Y = \bigoplus _{i \in I} Y_ i$ be a direct sum. Let $a : X \to Y$ with $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}_ c)$ and $g \in G(X)$ represent an element $\xi $ of $G'(Y)$. The morphism $a : X \to Y$ can be uniquely written as a sum of morphisms $a_ i : X \to Y_ i$ almost all zero as $X$ is a compact object of $\mathcal{D}$. Let $I' = \{ i \in I \mid a_ i \not= 0\} $. Then we can factor $a$ as the composition

We conclude that $\xi = \sum _{i \in I'} \xi _ i$ is the sum of the images of the elements $\xi _ i \in G'(Y_ i)$ corresponding to $a_ i : X \to Y_ i$ and $g \in G(X)$. Hence $\bigoplus G'(Y_ i) \to G'(Y)$ is surjective. We omit the (trivial) verification that it is injective.

It follows that the functor $Y \mapsto G'(Y)^\vee $ is cohomological and sends direct sums to direct products. Hence by Brown representability, see Derived Categories, Proposition 13.38.2 we conclude that there exists a $Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ and an isomorphism $G'(Z)^\vee = \mathop{\mathrm{Hom}}\nolimits (Z, Y)$ functorially in $Z$. For $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}_ c)$ we have $G'(X)^\vee = G(X)^\vee = (H(X)^\vee )^\vee = H(X)$ because $\dim _ k H(X) < \infty $ and the proof is complete. $\square$

Theorem 57.6.3. Let $X$ be a proper scheme over a field $k$. Let $F : D_{perf}(\mathcal{O}_ X)^{opp} \to \text{Vect}_ k$ be a $k$-linear cohomological functor such that

for all $E \in D_{perf}(\mathcal{O}_ X)$. Then $F$ is isomorphic to a functor of the form $E \mapsto \mathop{\mathrm{Hom}}\nolimits _ X(E, K)$ for some $K \in D^ b_{\textit{Coh}}(\mathcal{O}_ X)$.

**Proof.**
The derived category $D_\mathit{QCoh}(\mathcal{O}_ X)$ has direct sums, is compactly generated, and $D_{perf}(\mathcal{O}_ X)$ is the full subcategory of compact objects, see Derived Categories of Schemes, Lemma 36.3.1, Theorem 36.15.3, and Proposition 36.17.1. By Lemma 57.6.2 we may assume $F(E) = \mathop{\mathrm{Hom}}\nolimits _ X(E, K)$ for some $K \in \mathop{\mathrm{Ob}}\nolimits (D_\mathit{QCoh}(\mathcal{O}_ X))$. Then it follows that $K$ is in $D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ by Lemma 57.5.4.
$\square$

Lemma 57.6.4. Let $X$ be a proper scheme over a field $k$ which is regular. Let $G : D_{perf}(\mathcal{O}_ X) \to \text{Vect}_ k$ be a $k$-linear homological functor such that

for all $E \in D_{perf}(\mathcal{O}_ X)$. Then $G$ is isomorphic to a functor of the form $E \mapsto \mathop{\mathrm{Hom}}\nolimits _ X(K, E)$ for some $K \in D_{perf}(\mathcal{O}_ X)$.

**Proof.**
Consider the contravariant functor $E \mapsto E^\vee $ on $D_{perf}(\mathcal{O}_ X)$, see Cohomology, Lemma 20.50.5. This functor is an exact anti-self-equivalence of $D_{perf}(\mathcal{O}_ X)$. Hence we may apply Theorem 57.6.3 to the functor $F(E) = G(E^\vee )$ to find $K \in D_{perf}(\mathcal{O}_ X)$ such that $G(E^\vee ) = \mathop{\mathrm{Hom}}\nolimits _ X(E, K)$. It follows that $G(E) = \mathop{\mathrm{Hom}}\nolimits _ X(E^\vee , K) = \mathop{\mathrm{Hom}}\nolimits _ X(K^\vee , E)$ and we conclude that taking $K^\vee $ works.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)