Lemma 10.150.7. Let $R \to S \to S'$ be ring maps. Let $J$, resp. $J'$ be the kernel of the multiplication map $S \otimes _ R S \to S$, resp. $S' \otimes _{R'} S' \to S'$. If $S \to S'$ is formally étale, then the map
is an isomorphism for all $k \geq 0$. In particular, the map $S' \otimes _ S \Omega _{S/R} \to \Omega _{S'/R}$ is an isomorphism.
Comments (0)
There are also: