Lemma 20.31.8. Consider a commutative square
\[ \xymatrix{ (X', \mathcal{O}_{X'}) \ar[r]_{g'} \ar[d]_{f'} & (X, \mathcal{O}_ X) \ar[d]^ f \\ (Y', \mathcal{O}_{Y'}) \ar[r]^ g & (Y, \mathcal{O}_ Y) } \]
of ringed spaces. Let $K, L$ in $D(\mathcal{O}_ X)$. The relative cup product is compatible with the square in the sense that the diagram
\[ \xymatrix{ Lg^*(Rf_*K \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*L) \ar[r] \ar@{=}[d] & Lg^*(Rf_*(K \otimes _{\mathcal{O}_ X}^\mathbf {L} L)) \ar[d] \\ Lg^*Rf_*K \otimes _{\mathcal{O}_{Y'}}^\mathbf {L} Lg^*Rf_*L \ar[d] & R(f')_*L(g')^*(K \otimes _{\mathcal{O}_ X}^\mathbf {L} L) \ar@{=}[d] \\ R(f')_*(L(g')^*K \otimes _{\mathcal{O}_{Y'}} R(f')_*(L(g')^*L \ar[r] & R(f')_*(L(g')^*K \otimes _{\mathcal{O}_{X'}}^\mathbf {L} L(g')^*L) } \]
is commutative in $D(\mathcal{O}_{Y'})$. The horizontal arrows are given by the relative cup product (Remark 20.28.7) and the vertical arrows are given by the base change map (Remark 20.28.3) and Lemma 20.27.3.
Comments (0)
There are also: