Lemma 50.18.2. Let $R_1 \to R_2$ be a ring homomorphism. For $i = 1, 2$ consider commutative diagrams
of $R_ i$-modules as in Lemma 50.18.1. Assume we have maps $K_1^0 \to K_2^0$, $L_1^ j \to L_2^ j$, $M_1^ j \to M_2^ j$ compatible with the given ring map $R_1 \to R_2$ and compatible with the maps in the displayed diagrams. If the maps $M_1^ j \otimes _{R_1} R_2 \to M_2^ j$ are isomorphisms, then the diagrams
commute.
Comments (0)
There are also: