The Stacks project

Lemma 10.41.11. Let $R \to S$ be a ring map. Let $\mathfrak p \subset R$ be a prime. Assume that

  1. there exists a unique prime $\mathfrak q \subset S$ lying over $\mathfrak p$, and

  2. either

    1. going up holds for $R \to S$, or

    2. going down holds for $R \to S$ and there is at most one prime of $S$ above every prime of $R$.

Then $S_{\mathfrak p} = S_{\mathfrak q}$.

Proof. Consider any prime $\mathfrak q' \subset S$ which corresponds to a point of $\mathop{\mathrm{Spec}}(S_{\mathfrak p})$. This means that $\mathfrak p' = R \cap \mathfrak q'$ is contained in $\mathfrak p$. Here is a picture

\[ \xymatrix{ \mathfrak q' \ar@{-}[d] \ar@{-}[r] & ? \ar@{-}[r] \ar@{-}[d] & S \ar@{-}[d] \\ \mathfrak p' \ar@{-}[r] & \mathfrak p \ar@{-}[r] & R } \]

Assume (1) and (2)(a). By going up there exists a prime $\mathfrak q'' \subset S$ with $\mathfrak q' \subset \mathfrak q''$ and $\mathfrak q''$ lying over $\mathfrak p$. By the uniqueness of $\mathfrak q$ we conclude that $\mathfrak q'' = \mathfrak q$. In other words $\mathfrak q'$ defines a point of $\mathop{\mathrm{Spec}}(S_{\mathfrak q})$.

Assume (1) and (2)(b). By going down there exists a prime $\mathfrak q'' \subset \mathfrak q$ lying over $\mathfrak p'$. By the uniqueness of primes lying over $\mathfrak p'$ we see that $\mathfrak q' = \mathfrak q''$. In other words $\mathfrak q'$ defines a point of $\mathop{\mathrm{Spec}}(S_{\mathfrak q})$.

In both cases we conclude that the map $\mathop{\mathrm{Spec}}(S_{\mathfrak q}) \to \mathop{\mathrm{Spec}}(S_{\mathfrak p})$ is bijective. Clearly this means all the elements of $S - \mathfrak q$ are all invertible in $S_{\mathfrak p}$, in other words $S_{\mathfrak p} = S_{\mathfrak q}$. $\square$

Comments (0)

There are also:

  • 4 comment(s) on Section 10.41: Going up and going down

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00EA. Beware of the difference between the letter 'O' and the digit '0'.