Lemma 10.130.1. Let S be a finite type algebra over a field k. Let \varphi : k[y_1, \ldots , y_ d] \to S be a quasi-finite ring map. As subsets of \mathop{\mathrm{Spec}}(S) we have
For notation see Definition 10.125.1.
Lemma 10.130.1. Let S be a finite type algebra over a field k. Let \varphi : k[y_1, \ldots , y_ d] \to S be a quasi-finite ring map. As subsets of \mathop{\mathrm{Spec}}(S) we have
For notation see Definition 10.125.1.
Proof. Let \mathfrak q \subset S be a prime. Denote \mathfrak p = k[y_1, \ldots , y_ d] \cap \mathfrak q. Note that always \dim (S_{\mathfrak q}) \leq \dim (k[y_1, \ldots , y_ d]_{\mathfrak p}) by Lemma 10.125.4 for example. Moreover, the field extension \kappa (\mathfrak q)/\kappa (\mathfrak p) is finite and hence \text{trdeg}_ k(\kappa (\mathfrak p)) = \text{trdeg}_ k(\kappa (\mathfrak q)).
Let \mathfrak q be an element of the left hand side. Then Lemma 10.112.9 applies and we conclude that S_{\mathfrak q} is Cohen-Macaulay and \dim (S_{\mathfrak q}) = \dim (k[y_1, \ldots , y_ d]_{\mathfrak p}). Combined with the equality of transcendence degrees above and Lemma 10.116.3 this implies that \dim _{\mathfrak q}(S/k) = d. Hence \mathfrak q is an element of the right hand side.
Let \mathfrak q be an element of the right hand side. By the equality of transcendence degrees above, the assumption that \dim _{\mathfrak q}(S/k) = d and Lemma 10.116.3 we conclude that \dim (S_{\mathfrak q}) = \dim (k[y_1, \ldots , y_ d]_{\mathfrak p}). Hence Lemma 10.128.1 applies and we see that \mathfrak q is an element of the left hand side. \square
Comments (0)