The Stacks project

Lemma 14.29.3. Let $\mathcal{A}$ be an abelian category. Let $U$, $V$ be simplicial objects of $\mathcal{A}$. Let $a, b : U \to V$ be a pair of morphisms. Assume the corresponding maps of chain complexes $N(a), N(b) : N(U) \to N(V)$ are homotopic by a homotopy $\{ N_ n : N(U)_ n \to N(V)_{n + 1}\} $. Then there exists a homotopy from $a$ to $b$ as in Definition 14.26.1. Moreover, one can choose the homotopy $h : U \times \Delta [1] \to V$ such that $N_ n = N(h)_ n$ where $N(h)$ is the homotopy coming from $h$ as in Section 14.27.

Proof. Let $(\diamond N(U), \diamond a, \diamond b, \diamond h)$ be as in Lemma 14.29.1 and its proof. By that lemma there exists a morphism $\diamond N(U) \to N(V)$ representing the triple $(N(a), N(b), \{ N_ n\} )$. We will show there exists a morphism $\psi : N(U \times \Delta [1]) \to \diamond {N(U)}$ such that $\diamond a = \psi \circ N(e_0)$, and $\diamond b = \psi \circ N(e_1)$. Moreover, we will show that the homotopy between $N(e_0), N(e_1) : N(U) \to N(U \times \Delta [1])$ coming from (14.27.0.1) and Lemma 14.27.1 with $h = \text{id}_{U \times \Delta [1]}$ is mapped via $\psi $ to the canonical homotopy $\diamond h$ between the two maps $\diamond a, \diamond b : N(U) \to \diamond {N(U)}$. Certainly this will imply the lemma.

Note that $N : \text{Simp}(\mathcal{A}) \to \text{Ch}_{\geq 0}(\mathcal{A})$ as a functor is a direct summand of the functor $s : \text{Simp}(\mathcal{A}) \to \text{Ch}_{\geq 0}(\mathcal{A})$. Also, the functor $\diamond $ is compatible with direct sums. Thus it suffices instead to construct a morphism $\Psi : s(U \times \Delta [1]) \to \diamond {s(U)}$ with the corresponding properties. This is what we do below.

By Definition 14.26.1 the morphisms $e_0 : U \to U \times \Delta [1]$ and $e_1 : U \to U \times \Delta [1]$ are homotopic with homotopy $\text{id}_{U \times \Delta [1]}$. By Lemma 14.27.1 we get an explicit homotopy $\{ h_ n : s(U)_ n \to s(U \times \Delta [1])_{n + 1}\} $ between the morphisms of chain complexes $s(e_0) : s(U) \to s(U \times \Delta [1])$ and $s(e_1) : s(U) \to s(U \times \Delta [1])$. By Lemma 14.29.2 above we get a corresponding morphism

\[ \Phi : \diamond {s(U)} \to s(U \times \Delta [1]) \]

According to the construction, $\Phi _ n$ restricted to the summand $s(U)[-1]_ n = s(U)_{n - 1}$ of $\diamond {s(U)}_ n$ is equal to $h_{n - 1}$. And

\[ h_{n - 1} = \sum \nolimits _{i = 0}^{n - 1} (-1)^{i + 1} s^ n_ i \cdot \alpha ^ n_{i + 1} : U_{n - 1} \to \bigoplus \nolimits _ j U_ n \cdot \alpha ^ n_ j. \]

with obvious notation.

On the other hand, the morphisms $e_ i : U \to U \times \Delta [1]$ induce a morphism $(e_0, e_1) : U \oplus U \to U \times \Delta [1]$. Denote $W$ the cokernel. Note that, if we write $(U \times \Delta [1])_ n = \bigoplus _{\alpha : [n] \to [1]} U_ n \cdot \alpha $, then we may identify $W_ n = \bigoplus _{i = 1}^ n U_ n \cdot \alpha ^ n_ i$ with $\alpha ^ n_ i$ as in Section 14.26. We have a commutative diagram

\[ \xymatrix{ 0 \ar[r] & U \oplus U \ar[rd]_{(1, 1)} \ar[r] & U \times \Delta [1] \ar[d]^\pi \ar[r] & W \ar[r] & 0 \\ & & U & & } \]

This implies we have a similar commutative diagram after applying the functor $s$. Next, we choose the splittings $\sigma _ n : s(W)_ n \to s(U \times \Delta [1])_ n$ by mapping the summand $U_ n \cdot \alpha ^ n_ i \subset W_ n$ via $(-1, 1)$ to the summands $U_ n \cdot \alpha ^ n_0 \oplus U_ n \cdot \alpha ^ n_ i \subset (U \times \Delta [1])_ n$. Note that $s(\pi )_ n \circ \sigma _ n = 0$. It follows that $(1, 1) \circ \delta (\sigma )_ n = 0$. Hence $\delta (\sigma )$ factors as in Lemma 14.29.2. By that lemma we obtain a canonical morphism $\Psi : s(U \times \Delta [1]) \to \diamond {s(U)}$.

To compute $\Psi $ we first compute the morphism $\delta (\sigma ) : s(W) \to s(U)[-1] \oplus s(U)[-1]$. According to Homology, Lemma 12.14.4 and its proof, to do this we have compute

\[ d_{s(U \times \delta [1]), n} \circ \sigma _ n - \sigma _{n - 1} \circ d_{s(W), n} \]

and write it as a morphism into $U_{n - 1} \cdot \alpha ^{n - 1}_0 \oplus U_{n - 1} \cdot \alpha ^{n - 1}_ n$. We only do this in case $\mathcal{A}$ is the category of abelian groups. We use the short hand notation $x_{\alpha }$ for $x \in U_ n$ to denote the element $x$ in the summand $U_ n \cdot \alpha $ of $(U \times \Delta [1])_ n$. Recall that

\[ d_{s(U \times \delta [1]), n} = \sum \nolimits _{i = 0}^ n (-1)^ i d^ n_ i \]

where $d^ n_ i$ maps the summand $U_ n \cdot \alpha $ to the summand $U_{n - 1} \cdot (\alpha \circ \delta ^ n_ i)$ via the morphism $d^ n_ i$ of the simplicial object $U$. In terms of the notation above this means

\[ d_{s(U \times \delta [1]), n}(x_\alpha ) = \sum \nolimits _{i = 0}^ n (-1)^ i (d^ n_ i(x))_{\alpha \circ \delta ^ n_ i} \]

Starting with $x_\alpha \in W_ n$, in other words $\alpha = \alpha ^ n_ j$ for some $j \in \{ 1, \ldots , n\} $, we see that $\sigma _ n(x_\alpha ) = x_\alpha - x_{\alpha ^ n_0}$ and hence

\[ (d_{s(U \times \delta [1]), n} \circ \sigma _ n)(x_\alpha ) = \sum \nolimits _{i = 0}^ n (-1)^ i (d^ n_ i(x))_{\alpha \circ \delta ^ n_ i} - \sum \nolimits _{i = 0}^ n (-1)^ i (d^ n_ i(x))_{\alpha ^ n_0 \circ \delta ^ n_ i} \]

To compute $d_{s(W), n}(x_\alpha )$, we have to omit all terms where $\alpha \circ \delta ^ n_ i = \alpha ^{n - 1}_0, \alpha ^{n - 1}_ n$. Hence we get

\[ \begin{matrix} (\sigma _{n - 1} \circ d_{s(W), n})(x_\alpha ) = \\ \sum \nolimits _{i = 0, \ldots , n\text{ and } \alpha \circ \delta ^ n_ i \not= \alpha ^{n - 1}_0\text{ or }\alpha ^{n - 1}_ n} \Big((-1)^ i (d^ n_ i(x))_{\alpha \circ \delta ^ n_ i} - (-1)^ i (d^ n_ i(x))_{\alpha ^{n - 1}_0} \Big) \end{matrix} \]

Clearly the difference of the two terms is the sum

\[ \sum \nolimits _{i = 0, \ldots , n\text{ and } \alpha \circ \delta ^ n_ i = \alpha ^{n - 1}_0\text{ or }\alpha ^{n - 1}_ n} \Big((-1)^ i (d^ n_ i(x))_{\alpha \circ \delta ^ n_ i} - (-1)^ i (d^ n_ i(x))_{\alpha ^{n - 1}_0} \Big) \]

Of course, if $\alpha \circ \delta ^ n_ i = \alpha ^{n - 1}_0$ then the term drops out. Recall that $\alpha = \alpha ^ n_ j$ for some $j \in \{ 1, \ldots , n\} $. The only way $\alpha ^ n_ j \circ \delta ^ n_ i = \alpha ^{n - 1}_ n$ is if $j = n$ and $i = n$. Thus we actually get $0$ unless $j = n$ and in that case we get $(-1)^ n(d^ n_ n(x))_{\alpha ^{n - 1}_ n} - (-1)^ n(d^ n_ n(x))_{\alpha ^{n - 1}_0}$. In other words, we conclude the morphism

\[ \delta (\sigma )_ n : W_ n \to (s(U)[-1] \oplus s(U)[-1])_ n = U_{n - 1} \oplus U_{n - 1} \]

is zero on all summands except $U_ n \cdot \alpha ^ n_ n$ and on that summand it is equal to $((-1)^ nd^ n_ n, -(-1)^ nd^ n_ n)$. (Namely, the first summand of the two corresponds to the factor with $\alpha ^{n - 1}_ n$ because that is the map $[n - 1] \to [1]$ which maps everybody to $0$, and hence corresponds to $e_0$.)

We obtain a canonical diagram

\[ \xymatrix{ 0 \ar[r] & s(U) \oplus s(U) \ar[r] \ar[d] & \diamond {s(U)} \ar[r] \ar[d]^{\Phi }& s(U)[-1] \ar[r] \ar[d] & 0 \\ 0 \ar[r] & s(U) \oplus s(U) \ar[r] \ar[d] & s(U \times \Delta [1]) \ar[r] \ar[d]^\Psi & s(W) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & s(U) \oplus s(U) \ar[r] & \diamond {s(U)} \ar[r] & s(U)[-1] \ar[r] & 0 } \]

We claim that $\Phi \circ \Psi $ is the identity. To see this it is enough to prove that the composition of $\Phi $ and $\delta (\sigma )$ as a map $s(U)[-1] \to s(W) \to s(U)[-1] \oplus s(U)[-1]$ is the identity in the first factor and minus identity in the second. By the computations above it is $((-1)^ nd^ n_0, -(-1)^ nd^ n_0) \circ (-1)^ n s^ n_ n = (1, -1)$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01A4. Beware of the difference between the letter 'O' and the digit '0'.