Lemma 17.4.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Let $I$ be a set. Let $s_ i$, $i \in I$ be a collection of local sections of $\mathcal{F}$, i.e., $s_ i \in \mathcal{F}(U_ i)$ for some opens $U_ i \subset X$. There exists a unique smallest subsheaf of $\mathcal{O}_ X$-modules $\mathcal{G}$ such that each $s_ i$ corresponds to a local section of $\mathcal{G}$.
Proof. Consider the subpresheaf of $\mathcal{O}_ X$-modules defined by the rule
\[ U \longmapsto \{ \text{sums } \sum \nolimits _{i \in J} f_ i (s_ i|_ U) \text{ where } J \text{ is finite, } U \subset U_ i \text{ for } i\in J, \text{ and } f_ i \in \mathcal{O}_ X(U) \} \]
Let $\mathcal{G}$ be the sheafification of this subpresheaf. This is a subsheaf of $\mathcal{F}$ by Sheaves, Lemma 6.16.3. Since all the finite sums clearly have to be in $\mathcal{G}$ this is the smallest subsheaf as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #5969 by Laurent Moret-Bailly on
Comment #6148 by Johan on