The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

17.4 Sections of sheaves of modules

Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Let $s \in \Gamma (X, \mathcal{F}) = \mathcal{F}(X)$ be a global section. There is a unique map of $\mathcal{O}_ X$-modules

\[ \mathcal{O}_ X \longrightarrow \mathcal{F}, \ f \longmapsto fs \]
associated to $s$. The notation above signifies that a local section $f$ of $\mathcal{O}_ X$, i.e., a section $f$ over some open $U$, is mapped to the multiplication of $f$ with the restriction of $s$ to $U$. Conversely, any map $\varphi : \mathcal{O}_ X \to \mathcal{F}$ gives rise to a section $s = \varphi (1)$ such that $\varphi $ is the morphism associated to $s$.

Definition 17.4.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. We say that $\mathcal{F}$ is generated by global sections if there exist a set $I$, and global sections $s_ i \in \Gamma (X, \mathcal{F})$, $i \in I$ such that the map

\[ \bigoplus \nolimits _{i \in I} \mathcal{O}_ X \longrightarrow \mathcal{F} \]

which is the map associated to $s_ i$ on the summand corresponding to $i$, is surjective. In this case we say that the sections $s_ i$ generate $\mathcal{F}$.

We often use the abuse of notation introduced in Sheaves, Section 6.11 where, given a local section $s$ of $\mathcal{F}$ defined in an open neighbourhood of a point $x \in X$, we denote $s_ x$, or even $s$ the image of $s$ in the stalk $\mathcal{F}_ x$.

Lemma 17.4.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Let $I$ be a set. Let $s_ i \in \Gamma (X, \mathcal{F})$, $i \in I$ be global sections. The sections $s_ i$ generate $\mathcal{F}$ if and only if for all $x\in X$ the elements $s_{i, x} \in \mathcal{F}_ x$ generate the $\mathcal{O}_{X, x}$-module $\mathcal{F}_ x$.

Proof. Omitted. $\square$

slogan

Lemma 17.4.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$, $\mathcal{G}$ be sheaves of $\mathcal{O}_ X$-modules. If $\mathcal{F}$ and $\mathcal{G}$ are generated by global sections then so is $\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G}$.

Proof. Omitted. $\square$

Lemma 17.4.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Let $I$ be a set. Let $s_ i$, $i \in I$ be a collection of local sections of $\mathcal{F}$, i.e., $s_ i \in \mathcal{F}(U_ i)$ for some opens $U_ i \subset X$. There exists a unique smallest subsheaf of $\mathcal{O}_ X$-modules $\mathcal{G}$ such that each $s_ i$ corresponds to a local section of $\mathcal{G}$.

Proof. Consider the subpresheaf of $\mathcal{O}_ X$-modules defined by the rule

\[ U \longmapsto \{ \text{sums } \sum \nolimits _{i \in J} f_ i (s_ i|_ U) \text{ where } J \text{ is finite, } U \subset U_ i \text{ for } i\in J, \text{ and } f_ i \in \mathcal{O}_ X(U) \} \]

Let $\mathcal{G}$ be the sheafification of this subpresheaf. This is a subsheaf of $\mathcal{F}$ by Sheaves, Lemma 6.16.3. Since all the finite sums clearly have to be in $\mathcal{G}$ this is the smallest subsheaf as desired. $\square$

Definition 17.4.5. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Given a set $I$, and local sections $s_ i$, $i \in I$ of $\mathcal{F}$ we say that the subsheaf $\mathcal{G}$ of Lemma 17.4.4 above is the subsheaf generated by the $s_ i$.

Lemma 17.4.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Given a set $I$, and local sections $s_ i$, $i \in I$ of $\mathcal{F}$. Let $\mathcal{G}$ be the subsheaf generated by the $s_ i$ and let $x\in X$. Then $\mathcal{G}_ x$ is the $\mathcal{O}_{X, x}$-submodule of $\mathcal{F}_ x$ generated by the elements $s_{i, x}$ for those $i$ such that $s_ i$ is defined at $x$.

Proof. This is clear from the construction of $\mathcal{G}$ in the proof of Lemma 17.4.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01AL. Beware of the difference between the letter 'O' and the digit '0'.