Lemma 17.4.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$, $\mathcal{G}$ be sheaves of $\mathcal{O}_ X$-modules. If $\mathcal{F}$ and $\mathcal{G}$ are generated by global sections then so is $\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G}$.
The tensor product of globally generated sheaves of modules is globally generated.
Proof. Omitted. $\square$
Comments (1)
Comment #884 by Konrad Voelkel on