Lemma 17.4.3. Let (X, \mathcal{O}_ X) be a ringed space. Let \mathcal{F}, \mathcal{G} be sheaves of \mathcal{O}_ X-modules. If \mathcal{F} and \mathcal{G} are generated by global sections then so is \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G}.
The tensor product of globally generated sheaves of modules is globally generated.
Proof. Omitted. \square
Comments (1)
Comment #884 by Konrad Voelkel on