Lemma 17.4.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$, $\mathcal{G}$ be sheaves of $\mathcal{O}_ X$-modules. If $\mathcal{F}$ and $\mathcal{G}$ are generated by global sections then so is $\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G}$.
The tensor product of globally generated sheaves of modules is globally generated.
Proof.
Omitted.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #884 by Konrad Voelkel on