Lemma 29.2.2. Let $X$ be a scheme. Let $i : Z \to X$ and $i' : Z' \to X$ be closed immersions and consider the ideal sheaves $\mathcal{I} = \mathop{\mathrm{Ker}}(i^\sharp )$ and $\mathcal{I}' = \mathop{\mathrm{Ker}}((i')^\sharp )$ of $\mathcal{O}_ X$.
The morphism $i : Z \to X$ factors as $Z \to Z' \to X$ for some $a : Z \to Z'$ if and only if $\mathcal{I}' \subset \mathcal{I}$. If this happens, then $a$ is a closed immersion.
We have $Z \cong Z'$ over $X$ if and only if $\mathcal{I} = \mathcal{I}'$.
Comments (0)