The Stacks project

Remark 29.49.14. There is a variant of Definition 29.49.1 where we consider only those morphism $U \to Y$ defined on scheme theoretically dense open subschemes $U \subset X$. We use Lemma 29.7.6 to see that we obtain an equivalence relation. An equivalence class of these is called a pseudo-morphism from $X$ to $Y$. If $X$ is reduced the two notions coincide.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01RX. Beware of the difference between the letter 'O' and the digit '0'.