Theorem 41.9.2. Let $A$, $B$ be Noetherian local rings. Let $f : A \to B$ be a local homomorphism. If $M$ is a finite $B$-module that is flat as an $A$-module, and $t \in \mathfrak m_ B$ is an element such that multiplication by $t$ is injective on $M/\mathfrak m_ AM$, then $M/tM$ is also $A$-flat.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #7059 by Janos Kollar on

Comment #7060 by Johan on