The Stacks project

Lemma 29.36.3. The composition of two morphisms which are étale is étale.

Proof. In the proof of Lemma 29.36.2 we saw that being étale is a local property of ring maps. Hence the first statement of the lemma follows from Lemma 29.14.5 combined with the fact that being étale is a property of ring maps that is stable under composition, see Algebra, Lemma 10.143.3. $\square$

Comments (0)

There are also:

  • 3 comment(s) on Section 29.36: Étale morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02GN. Beware of the difference between the letter 'O' and the digit '0'.