Lemma 29.36.2. Let $f : X \to S$ be a morphism of schemes. The following are equivalent

1. The morphism $f$ is étale.

2. For every affine opens $U \subset X$, $V \subset S$ with $f(U) \subset V$ the ring map $\mathcal{O}_ S(V) \to \mathcal{O}_ X(U)$ is étale.

3. There exists an open covering $S = \bigcup _{j \in J} V_ j$ and open coverings $f^{-1}(V_ j) = \bigcup _{i \in I_ j} U_ i$ such that each of the morphisms $U_ i \to V_ j$, $j\in J, i\in I_ j$ is étale.

4. There exists an affine open covering $S = \bigcup _{j \in J} V_ j$ and affine open coverings $f^{-1}(V_ j) = \bigcup _{i \in I_ j} U_ i$ such that the ring map $\mathcal{O}_ S(V_ j) \to \mathcal{O}_ X(U_ i)$ is étale, for all $j\in J, i\in I_ j$.

Moreover, if $f$ is étale then for any open subschemes $U \subset X$, $V \subset S$ with $f(U) \subset V$ the restriction $f|_ U : U \to V$ is étale.

Proof. This follows from Lemma 29.14.3 if we show that the property “$R \to A$ is étale” is local. We check conditions (a), (b) and (c) of Definition 29.14.1. These all follow from Algebra, Lemma 10.143.3. $\square$

There are also:

• 3 comment(s) on Section 29.36: Étale morphisms

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).