Remark 64.4.2. Of the properties of morphisms which are stable under base change (as listed in Remark 64.4.1) the following are also stable under compositions:

1. closed, open and locally closed immersions, see Schemes, Lemma 26.24.3,

2. quasi-compact, see Schemes, Lemma 26.19.4,

3. universally closed, see Morphisms, Lemma 29.41.4,

4. (quasi-)separated, see Schemes, Lemma 26.21.12,

5. monomorphism, see Schemes, Lemma 26.23.4,

6. surjective, see Morphisms, Lemma 29.9.2,

7. universally injective, see Morphisms, Lemma 29.10.5,

8. affine, see Morphisms, Lemma 29.11.7,

9. quasi-affine, see Morphisms, Lemma 29.13.4,

10. (locally) of finite type, see Morphisms, Lemma 29.15.3,

11. (locally) quasi-finite, see Morphisms, Lemma 29.20.12,

12. (locally) of finite presentation, see Morphisms, Lemma 29.21.3,

13. universally open, see Morphisms, Lemma 29.23.3,

14. flat, see Morphisms, Lemma 29.25.6,

15. syntomic, see Morphisms, Lemma 29.30.3,

16. smooth, see Morphisms, Lemma 29.34.4,

17. unramified (resp. G-unramified), see Morphisms, Lemma 29.35.4,

18. étale, see Morphisms, Lemma 29.36.3,

19. proper, see Morphisms, Lemma 29.41.4,

20. H-projective, see Morphisms, Lemma 29.43.7,

21. finite or integral, see Morphisms, Lemma 29.44.5,

22. finite locally free, see Morphisms, Lemma 29.48.3,

23. universally submersive, see Morphisms, Lemma 29.24.3,

24. universal homeomorphism, see Morphisms, Lemma 29.45.3.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).