Proof.
We will use Lemma 67.8.4 without further mention. It is clear that (1) implies (2) and that (2) implies (3). Assume (3). Let $Z$ be a quasi-compact algebraic space over $S$, and let $Z \to Y$ be a morphism. By Properties of Spaces, Lemma 66.6.3 there exists an affine scheme $U$ and a surjective étale morphism $U \to Z$. Then $U \times _ Y X \to Z \times _ Y X$ is a surjective morphism of algebraic spaces, see Lemma 67.5.5. By assumption $|U \times _ Y X|$ is quasi-compact. It surjects onto $|Z \times _ Y X|$, hence we conclude that $|Z \times _ Y X|$ is quasi-compact, see Topology, Lemma 5.12.7. This proves that (3) implies (1).
The implications (1) $\Rightarrow $ (4), (4) $\Rightarrow $ (5) are clear. The implication (5) $\Rightarrow $ (1) follows from Lemma 67.8.7 and the fact that an étale morphism of algebraic spaces is universally open (see discussion following Definition 67.6.2).
Of course (1) implies (6) by taking the covering $Y = Y$. Assume $Y = \bigcup Y_ i$ is as in (6). Let $Z$ be affine and let $Z \to Y$ be a morphism. Then there exists a finite standard affine covering $Z = Z_1 \cup \ldots \cup Z_ n$ such that each $Z_ j \to Y$ factors through $Y_{i_ j}$ for some $i_ j$. Hence the algebraic space
\[ Z_ j \times _ Y X = Z_ j \times _{Y_{i_ j}} f^{-1}(Y_{i_ j}) \]
is quasi-compact. Since $Z \times _ Y X = \bigcup _{j = 1, \ldots , n} Z_ j \times _ Y X$ is a Zariski covering we see that $|Z \times _ Y X| = \bigcup _{j = 1, \ldots , n} |Z_ j \times _ Y X|$ (see Properties of Spaces, Lemma 66.4.8) is a finite union of quasi-compact spaces, hence quasi-compact. Thus we see that (6) implies (3).
$\square$
Comments (1)
Comment #1109 by Evan Warner on