Lemma 67.8.7. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $g : Y' \to Y$ be a universally open and surjective morphism of algebraic spaces such that the base change $f' : X' \to Y'$ is quasi-compact. Then $f$ is quasi-compact.
Proof. Let $Z \to Y$ be a morphism of algebraic spaces with $Z$ quasi-compact. As $g$ is universally open and surjective, we see that $Y' \times _ Y Z \to Z$ is open and surjective. As every point of $|Y' \times _ Y Z|$ has a fundamental system of quasi-compact open neighbourhoods (see Properties of Spaces, Lemma 66.5.5) we can find a quasi-compact open $W \subset |Y' \times _ Y Z|$ which surjects onto $Z$. Denote $f'' : W \times _ Y X \to W$ the base change of $f'$ by $W \to Y'$. By assumption $W \times _ Y X$ is quasi-compact. As $W \to Z$ is surjective we see that $W \times _ Y X \to Z \times _ Y X$ is surjective. Hence $Z \times _ Y X$ is quasi-compact by Lemma 67.8.6. Thus $f$ is quasi-compact. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)